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Transistors Aren’t 
Improving? We’ll Use the 

Ones We Have Better!
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Are Accelerators REALLY Solving 
Our Transistor Problems?
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Are Accelerators 
Driven  by:

SPECIALIZATION?

TRANSISTORS?

OR
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Sources:
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IDEA: Build a Model for CMOS POTENTIAL 
To Account for CMOS Scaling Contributions



CMOS Potential Model

Sources:
“Scaling equations for the accurate prediction of CMOS device performance from 180 nm to 7 nm”, Stillmaker and Baas, VLSI Journal 2017
“International Technology Roadmap For Semiconductors (ITRS) 2015 Edition”, ITRS 2015 “International Roadmap For devices and systems (IRDS) 2017 Edition”, IRDS 2017
www.techpowerup.com/cpudb, www.techpowerup.com/gpudb,  cpudb.stanford.edu
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▪ Device-Level Scaling: Using CMOS Scaling study + ITRS/IRDS Projections

▪ Chip-Transistor Budget: Using Datasheets of Thousands of Commercial Processors

Frequency Leakage 
Power

Dynamic 
Power

0.25
0.5

0.75
1.0

Sc
al

in
g 

(x
)

0.25
0.5

0.75
1.0

0.25
0.5

0.75
1.0

o Model How Many Fit a Chip Die (Given Area + CMOS Node) and Power Envelope (Given TDP, Frequency etc.)



CMOS Potential Model
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▪ Integrate Device Scaling + Chip Budget Models To Build CMOS Potential Functions. For Example: 

CMOS-Level Throughput and Energy Efficiency. Normalized to 45nm CMOS 25mm2 chips
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Case Study 1: Deep Learning on FPGAs

27

Throughput Improved by 24x
Energy Efficiency Improved by 15x



▪ 11 Implementations of The AlexNet CNN Architecture on FPGAs

▪ Why: Recent Efforts Increased FPGA Utilization (More Transistors). 
Deep Learning is an Emerging Domain. Still Hope for Better Returns!

Case Study 1: Deep Learning on FPGAs
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CSR Improvements Reach 6x 
and Plateau 



Case Study 2: Video Decoding on ASICs

29



Case Study 2: Video Decoding on ASICs

Decoding Throughput Improved by 64x
Energy Efficiency Improved by 34x

30



▪ 12 Video Decoding ASIC Chips, Taped-out Over an 11 Years Period.

▪ Why: Domain Maturity. 
o Designs Convergence After Decades of Specialization Efforts.

Case Study 2: Video Decoding on ASICs
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Case Study 3: Bitcoin Mining on CPU/GPU/FPGA/ASIC 

32

▪ Analyze the Cross-Platform Evolution: From CPUs, to GPUs, FPGAs, and ASICs.
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Case Study 3: Bitcoin Mining on CPU/GPU/FPGA/ASIC 

Throughput per Area 
Improved by ~600,000x

Energy Efficiency
Improved by ~Million times!
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Switching to New Platforms (e.g., CPU→GPU) Improves CSR
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Case Study 3: Bitcoin Mining on CPU/GPU/FPGA/ASIC 
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BUT Within Platforms (e.g., ASIC vs. ASIC) CSRs Improvements are Small
Switching to New Platforms (e.g., CPU→GPU) Improves CSR

▪ Analyze the Cross-Platform Evolution: From CPUs, to GPUs, FPGAs, and ASICs.
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▪ Why: Confined Computation (Brute-force SHA256) + High-Pace CMOS Adoption

Case Study 3: Bitcoin Mining on CPU/GPU/FPGA/ASIC 
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Chip Specialization Pitfalls

▪ Massive Parallelism (e.g., GPU Gaming):
More Transistors → More Cores → More Parallelism
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Following the End of Moore’s Law 
ACCELERATORS WILL HIT A WALL



The Accelerator Wall
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The Accelerator Wall

▪ Given a Group of Accelerators, Plot Corresponding Points in a “Gain vs. CMOS” Space.   

▪ Use Projections to Predict the Accelerator Wall at the End of Moore’s Law (5nm CMOS):
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▪ Example: ASIC Bitcoin Miners

The Accelerator Wall

Linear
Sublinear
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Rankine: A CMOS Potential Modeling  Tools

▪ Named After William Rankine That Termed: “Potential Energy”

▪ Based on Datasheets of Thousands of Commercial Processors

▪ Calculates CMOS Potential Functions Based on Physical Chip Properties
o e.g., CMOS Process, Die Size/Number of Transistors, TDP, etc.

✓ Quickly Explore CMOS Costs of Design Alternatives as You Build Accelerators.
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Source: Wikipedia

GitHub Repo: https://github.com/PrincetonUniversity/accelerator-wall



Accelerator Zoo: a Database of Accelerator Statistics

▪ A Database of Popular Specialized Applications and Accelerator Statistics

• Deep Learning on FPGAs.

• Video Decoding ASICs.

• Bitcoin Mining ASICs.

✓ Evaluate Your Accelerator vs. Existing Accelerators in a Given Domain.
✓ Contribute Your Accelerator Data, Help us Understand New Domains.
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GitHub Repo: https://github.com/PrincetonUniversity/accelerator-wall

Performance Evolution of ASIC Bitcoin Miners



Conclusions
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o Demystifying Shows Gains are Mostly CMOS-Dominated.

o HW/SW Optimizations Play a Secondary Role.



Conclusions

▪ Be Mindful About Specialization vs. CMOS Returns in Accelerators

o Demystifying Shows Gains are Mostly CMOS-Dominated.

o HW/SW Optimizations Play a Secondary Role.

▪ Be Mindful About Chip Specialization Pitfalls and Diminishing Returns

o Parallelism Dies With CMOS Scaling: No More Transistors = No More Cores.

o Confined and Mature Domains Have Limited Improvement Opportunities.
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o All Popular Domains Will Mature. Diminishing Optimization Returns Will Follow.
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Conclusions

▪ Chip Specialization is Not a Long-Term Remedy for The End of Moore’s Law.

o All Popular Domains Will Mature. Diminishing Optimization Returns Will Follow.

o After the End of Moore’s Law, Accelerators Will Run Out of Steam FASTER THAN EXPECTED

▪ We Must Explore Other Forms of Optimization, That Are NOT CMOS Driven.
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