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Era of High Performance Storage Servers

• Modern SSD array (node) : 100+ GB/s, 100+ TB

− Products by Intel, DELL EMC, Pure Storage, SmartIOPS, …

$$
$$
$$
$$

Storage systems face challenges due to high SSD costs!

 An increasing number of fast SSDs 

per server
Data reduction 

becomes cost critical!

Source: 
SuperMicro NVMe Platform



CIDR: Cost-effective Inline Data Reduction

• Scalable data reduction system for modern SSD arrays

− Acceleration through a scalable FPGA array

− SW/HW orchestration for flexibility and efficiency 
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Deduplication + compression  60-90% data reduction



Existing Approaches
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1. Limitations of SW-Based Reduction

• CPUs run optimized data reduction operations

(-) Low throughput scalability due to CPU bottleneck

− Many compute-intensive operations & limited # of CPU sockets
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Write-only Workload Read/Write Workload

• Profiled CPU utilization on a 24-core machine

Heavy Computations on CPUs

90 % of CPU-intensive operations  hardware acceleration

Others:
3 cores

Hash:
7 cores

Compression:
14 cores

Others:
3 cores

Hash:
4 cores

Compression:
10 cores

Decompression:
7 cores
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(-) Low data reduction due to no inter-SSD deduplication

- Decentralized metadata management
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2. Limitations of Intra-SSD HW Acceleration

• Accelerators in each SSD for scalable throughput



(-) Low device utilization due to fixed provisioning

− Fixed, inflexible resource overprovisioning for the worst-case

3. Limitations of Dedicated HW Acceleration
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Design Goals

Dedicated
HW

SW
Intra-
SSD

X

CIDR

Throughput
scalability

1

High data 
reduction 

2

Efficient device 
utilization

3

O

O

O

O

O

X

X

O

X

O



• Motivation

• CIDR: A Cost-Effective In-line Data Reduction

− Key ideas

− Architecture details

• Evaluation

• Conclusion
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1. Scalable FPGA array

⇒ Throughput scalability
2. Centralized table management

⇒ High data reduction

3. Long-term FPGA reconfig

⇒ Efficient device utilization
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⇒ Efficient device utilization
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Key Idea #1: Scalable FPGA Array

• Deploy a CPU-free, scalable FPGA accelerator array

− Offload CPU-heavy operations to FPGA engines

− Deploy “multiple” accelerators on a scalable PCIe tree (c.f., 4 for CPUs)
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“Higher throughput” with a scalable FPGA array!
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Key Idea #2: Centralized Table Management

• Detect all duplicate chunks in a large SSD array

“High data reduction” with the centralized table!
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• Reconfigure FPGAs to workload’s average behavior

Key Idea #3: Long-Term FPGA Reconfig

Inflexible HW Reconfigurable FPGA
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Throughput
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Key Idea #4: Short-term Request Scheduler

• Schedule requests considering available HW resources

− Shift the load of over-utilization period to under-utilization period

Requests

“High resource utilization” with smart request scheduling!



Required
Throughput

Time

Average

Worst-case

Over-utilized
period

Under-utilized
period

Key Idea #4: Short-term Request Scheduler

• Schedule requests considering available HW resources

− Shift the load of over-utilization period to under-utilization period

Requests

“High resource utilization” with smart request scheduling!
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No over-provisioning  Minimal HW resource

Key Idea #4: Short-term Request Scheduler

• Schedule requests considering available HW resources

− Shift the load of over-utilization period to under-utilization period

Requests

“High resource utilization” with smart request scheduling!
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Opt #1: Simplified, Minimized HW Structure

• Use SRAM buffer instead of slow DRAM buffer

• Cluster units to make distribution network simple
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Opt #2: Fast Initiation of Compression
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Opt #3: Short-Term Request Scheduling

• Delay over-subscribed requests into the delayed buffer

Match the workload behavior to the FPGA configuration

All
unique

Comp

Comp

HW

Hash

Hash

Hash

Hash

Wait

Wait

Backpressure

All
unique

Comp

Comp

HW

Hash

Hash

Hash

Hash

Delayed buffer

Short-term
scheduler

New
batch

No
Comp

Stable performance

U
n
iq

u
e

D
u
p
li
c
a
te

4 hash units 
2 compression units

Resource
config info



Opt #3: Short-Term Request Scheduling
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Opt #3: Short-Term Request Scheduling

• Delay over-subscribed requests into the delayed buffer

Match the workload behavior to the FPGA configuration
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Opt #3: Short-Term Request Scheduling

• Delay over-subscribed requests into the delayed buffer

Match the workload behavior to the FPGA configuration
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Evaluation Methodology

• Baseline: optimized SW in the Linux kernel

− Highly optimized SW using Intel ISA-L and SW pipelining

• 2 CIDR HW Engines and dual socket CPUs

− VCU9P FPGA (less than 33% LUTs utilized)

• Workloads with different characteristics

− 3 write-only and 1 mixed read/write workloads generated by Vdbench

− Real IO traces for dynamic workload behavior (refer to the paper)
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CIDR’s Low CPU Utilization

SW baseline

Enables extreme throughput scalability

Others:
3 cores

Hash:
7 cores

Compression:
14 cores
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• Comparison at the same throughput



0

25

50

75

100

125

1 2 3 4 5T
h
ro

u
g
h
p
u
t 

(G
B
/s

)

# of CPU sockets or # HW-Engines

High-end baseline CIDR

128 GB/s

CIDR’s High Throughput Scalability

31 GB/s

102 GB/s

4+ socket
system?

CPU Baseline

Easier to scale
*Assume PCIe Gen. 4

• Scalable FPGA array for higher throughput



Conclusion

• CIDR co-optimizes SW/HW for efficient reduction

− Array of scalable PCIe-attached FPGAs

− Centralized metadata management on CPUs

− Novel SW/HW orchestration mechanism

• CIDR significantly outperforms the CPU baseline

− Scalable performance for 1+ Tbps with multiple HW-Engines

− 85+ % CPU utilization reduction

• More practical details are in the paper


