
CIDR: A Cost-Effective In-Line Data Reduction 

System for Terabit-per-Second Scale SSD Arrays

Mohammadamin Ajdari1, Pyeongsu Park2, Joonsung Kim2,  

Dongup Kwon2, and Jangwoo Kim2

1Dept. of Computer Science and Engineering, POSTECH
2Dept. of Electrical and Computer Engineering, Seoul National University



Era of High Performance Storage Servers

• Modern SSD array (node) : 100+ GB/s, 100+ TB

− Products by Intel, DELL EMC, Pure Storage, SmartIOPS, …

$$
$$
$$
$$

Storage systems face challenges due to high SSD costs!

 An increasing number of fast SSDs 

per server
Data reduction 

becomes cost critical!

Source: 
SuperMicro NVMe Platform



CIDR: Cost-effective Inline Data Reduction

• Scalable data reduction system for modern SSD arrays

− Acceleration through a scalable FPGA array

− SW/HW orchestration for flexibility and efficiency 

CIDR HW Engines

SSD array

SSD
…

SSD SSD SSD SSD

CPU

CIDR SW

FPGA

Hash

FPGA

Comp

Decomp

Comp

Hash

Decomp

Metadata

…



Compression

Client data chunks

Unique chunks

Deduplication

SSD SSD … SSDSSD SSDSSD array

Compressed unique chunks

Client data
(e.g., DB, VM 

Image)

Hash
computation

Metadata access

B G B   B

Data Reduction Basics

Deduplication + compression  60-90% data reduction



Existing Approaches

SW-based

Intra-SSD Dedicated ASIC

HW acceleration 

Dedup Dedup

Comp Decomp

Hash

Comp

Decomp

ASIC

SSD SSD

SSD

Decomp

Dedup

Comp

NVM

A
S
IC

CPUCPU

CPU CPU

Motherboard



CPU

Single, slow SSD

SSD

SSD

SSD

SSD

Data reduction SW

…

100 GB/s

SSD array (large # of fast SSDs)

< 5 GB/s

1. Limitations of SW-Based Reduction

• CPUs run optimized data reduction operations

(-) Low throughput scalability due to CPU bottleneck

− Many compute-intensive operations & limited # of CPU sockets

CPU

CPU

CPU

CPU

Motherboard



CPU

Single, slow SSD

SSD

SSD

SSD

SSD

Data reduction SW

…

100 GB/s

SSD array (large # of fast SSDs)

< 5 GB/s

1. Limitations of SW-Based Reduction

• CPUs run optimized data reduction operations

(-) Low throughput scalability due to CPU bottleneck

− Many compute-intensive operations & limited # of CPU sockets

CPU

CPU

CPU

CPU

Motherboard



Write-only Workload Read/Write Workload

• Profiled CPU utilization on a 24-core machine

Heavy Computations on CPUs

90 % of CPU-intensive operations  hardware acceleration

Others:
3 cores

Hash:
7 cores

Compression:
14 cores

Others:
3 cores

Hash:
4 cores

Compression:
10 cores

Decompression:
7 cores



Dedup

Comp

SSD

0

50

100

1 2 4 8 16D
e
d
u
p
lic

a
ti
o
n
 

o
p
p
o
rt

u
n
it
y
 (

%
)

Number of SSDs in a node

> 90%

(-) Low data reduction due to no inter-SSD deduplication

- Decentralized metadata management

Cannot detect duplicates in other SSDs

A
S
IC

Dedup

Comp

SSD

A
S
IC

Dedup

Comp

SSD

A
S
IC

2. Limitations of Intra-SSD HW Acceleration

• Accelerators in each SSD for scalable throughput



(-) Low device utilization due to fixed provisioning

− Fixed, inflexible resource overprovisioning for the worst-case

3. Limitations of Dedicated HW Acceleration

Hash Comp

Comp

Comp

Hash

Hash

Comp

Hash

Hash

Decomp

Decomp

Decomp

Decomp

Decomp

Many wasted resource
(e.g., many duplicates & 
write-intensive workload)

Accelerators

Comp

Wasted

• “Shared-nothing” accelerators, separated from SSDs

No SW support
for device orchestration 

(e.g., centralized metadata)

Hash

Accelerators

Metadata

Hash

Metadata

Accelerators



Design Goals

Dedicated
HW

SW
Intra-
SSD

X

CIDR

Throughput
scalability

1

High data 
reduction 

2

Efficient device 
utilization

3

O

O

O

O

O

X

X

O

X

O



• Motivation

• CIDR: A Cost-Effective In-line Data Reduction

− Key ideas

− Architecture details

• Evaluation

• Conclusion

Index



1. Scalable FPGA array

⇒ Throughput scalability
2. Centralized table management

⇒ High data reduction

3. Long-term FPGA reconfig

⇒ Efficient device utilization

FPGA

Decomp

FPGA

Hash

Comp

Decomp

FPGA

Hash

Comp

Decomp

4. Short-term request scheduler

⇒ Efficient device utilization

CPU

Centralized
Metadata

Request
Scheduler

CIDR HW Engines

Four Key Ideas of CIDR

SSDSSD

SSD

SSD

…

SSD

SSD

…

SSD array



Key Idea #1: Scalable FPGA Array

• Deploy a CPU-free, scalable FPGA accelerator array

− Offload CPU-heavy operations to FPGA engines

− Deploy “multiple” accelerators on a scalable PCIe tree (c.f., 4 for CPUs)

Hash Hash

DecompComp

Hash Hash

DecompComp
…

…

PCIe

Limited # of slow CPUs Fast, scalable FPGA array

“Higher throughput” with a scalable FPGA array!

Hash

CPU CPU

Decomp

CPU CPU

Comp

Comp

Motherboard

Hash

Comp

Hash

Comp



SSD SSD SSD

SSD SSD SSD
SSD array

Decentralized Centralized

Dedup Metadata (CPU)

Key Idea #2: Centralized Table Management

• Detect all duplicate chunks in a large SSD array

“High data reduction” with the centralized table!

Dedup

SSD

Dedup

SSD

Dedup

SSD

Dedup

SSD

Dedup

SSD

Dedup

SSD



• Reconfigure FPGAs to workload’s average behavior

Key Idea #3: Long-Term FPGA Reconfig

Inflexible HW Reconfigurable FPGA

Hash

Comp

Decomp

Hash
Reconfigure

Write-only
workload

Read/write 
workload

Comp

Hash

Comp

Hash

Decomp Decomp

“Minimal HW resources” with reconfigurable FPGAs!

Hash

Hash

Comp

Hash

Decomp

Hash

Wasted

Overprovision for “worst-case”

Decomp Decomp Decomp
Decomp

Hash

Comp

Hash

Comp

Hash



Required
Throughput

Time

Average

Worst-case

Key Idea #4: Short-term Request Scheduler

• Schedule requests considering available HW resources

− Shift the load of over-utilization period to under-utilization period

Requests

“High resource utilization” with smart request scheduling!



Required
Throughput

Time

Average

Worst-case

Over-utilized
period

Under-utilized
period

Key Idea #4: Short-term Request Scheduler

• Schedule requests considering available HW resources

− Shift the load of over-utilization period to under-utilization period

Requests

“High resource utilization” with smart request scheduling!



Required
Throughput

Time

Average

Worst-case

No over-provisioning  Minimal HW resource

Key Idea #4: Short-term Request Scheduler

• Schedule requests considering available HW resources

− Shift the load of over-utilization period to under-utilization period

Requests

“High resource utilization” with smart request scheduling!



• Motivation

• CIDR: A Cost-Effective In-line Data Reduction

− Key ideas

− Architecture details

• Evaluation results

• Conclusion

Index



HW-EngineSoftware

CIDR: Basic Write Flow

Hash Hash

Data Reduction
Metadata

Hash

Comp Comp

DRAM

Distribution network

DRAM

Distribution network

HashChunk hash (BGBB)

Unique offsets (0,1)

Data batch

Compressed



Opt #1: Simplified, Minimized HW Structure

• Use SRAM buffer instead of slow DRAM buffer

• Cluster units to make distribution network simple

D
R
A
M

Complex
Distribution network

Complex
Distribution network

Hash Hash Hash

Comp Comp

Distribution network

Comp

SRAM

HashHashHash

SRAM

HashHashHash

SRAM

HashHashHash

CompComp
CompCompComp

SRAM SRAM SRAM

Reduce overhead of data buffering & distribution network



Opt #2: Fast Initiation of Compression

Comp

Distribution network

Hash

Comp

Hash Hash Hash

• Remove the large SRAM queue by predicting uniqueness

Comp

Distribution network

Hash

Comp

Hash Hash Hash

Unique chunk predictor

SRAM Queue
(Tens MBs)

Dedup
table

access
latency

+Unique:
SW

HW

SW

HW

Eliminate SRAM queueing by initiating compression early



Opt #3: Short-Term Request Scheduling

• Delay over-subscribed requests into the delayed buffer

Match the workload behavior to the FPGA configuration

All
unique

Comp

Comp

HW

Hash

Hash

Hash

Hash

Wait

Wait

Backpressure

All
unique

Comp

Comp

HW

Hash

Hash

Hash

Hash

Delayed buffer

Short-term
scheduler

New
batch

No
Comp

Stable performance

U
n
iq

u
e

D
u
p
li
c
a
te

4 hash units 
2 compression units

Resource
config info



Opt #3: Short-Term Request Scheduling

• Delay over-subscribed requests into the delayed buffer

Match the workload behavior to the FPGA configuration

All
unique

Comp

Comp

HW

Hash

Hash

Hash

Hash

Wait

Wait

Backpressure

All
unique

Comp

Comp

HW

Hash

Hash

Hash

Hash

Delayed buffer

Short-term
scheduler

New
batch

No
Comp

Stable performance

U
n
iq

u
e

D
u
p
li
c
a
te

4 hash units 
2 compression units

Resource
config info



Opt #3: Short-Term Request Scheduling

• Delay over-subscribed requests into the delayed buffer

Match the workload behavior to the FPGA configuration

All
unique

Comp

Comp

HW

Hash

Hash

Hash

Hash

Wait

Wait

Backpressure

All
unique

Comp

Comp

HW

Hash

Hash

Hash

Hash

Delayed buffer

Short-term
scheduler

New
batch

No
Comp

Stable performance

U
n
iq

u
e

D
u
p
li
c
a
te

4 hash units 
2 compression units

Resource
config info



Opt #3: Short-Term Request Scheduling

• Delay over-subscribed requests into the delayed buffer

Match the workload behavior to the FPGA configuration

All
unique

Comp

Comp

HW

Hash

Hash

Hash

Hash

Wait

Wait

Backpressure

All
unique

Comp

Comp

HW

Hash

Hash

Hash

Hash

Delayed buffer

Short-term
scheduler

New
batch

No
Comp

Stable performance

U
n
iq

u
e

D
u
p
li
c
a
te

4 hash units 
2 compression units

Resource
config info



Buffer

HHHHashHComp

Arbiter

Buffer

HHHHash

Arbiter

Buffer

Xbar

Decomp BufferHash Buffer

Xbar

Comp Buffer
P
C
Ie

-D
M

A CMD
Queue

MD
Buffer

Orchestrator

CIDR HW Engine

CIDR Detailed System Architecture

CPUs

VCU9P FPGA

SSDs

VCU9P FPGA

We prototyped an example CIDR system on a real machine!

DecompDecompDecomp

Arbiter

Unique chunk predictor

Opportunistic batch maker

CIDR SW Support

Data reduction table management Data reduction tables

Chunk store management

Buffer management Client request buffer

Delayed chunk buffer



• Motivation

• CIDR: A Cost-Effective In-line Data Reduction

− Key ideas

− Architecture details

• Evaluation

• Conclusion

Index



Evaluation Methodology

• Baseline: optimized SW in the Linux kernel

− Highly optimized SW using Intel ISA-L and SW pipelining

• 2 CIDR HW Engines and dual socket CPUs

− VCU9P FPGA (less than 33% LUTs utilized)

• Workloads with different characteristics

− 3 write-only and 1 mixed read/write workloads generated by Vdbench

− Real IO traces for dynamic workload behavior (refer to the paper)



0

5

10

15

High Medium Low Read-Write
Mixed (5:5)

T
h
ro

u
g
h
p
u
t 

(G
B
/s

)

Baseline (24 cores) CIDR (1 Engine)

Write-only (dedup opportunity)

1.9x

2.5x
2.5x

3.2x

CIDIR’s High Throughput (Single FPGA)

• Hardware acceleration with HW/SW optimizations



CIDR’s Low CPU Utilization

SW baseline

Enables extreme throughput scalability

Others:
3 cores

Hash:
7 cores

Compression:
14 cores

…

24 cores CIDR FPGA

CIDR SW:
1 core

Others:
1 core

2 cores

CIDR

Reduced
85%

• Comparison at the same throughput



0

25

50

75

100

125

1 2 3 4 5T
h
ro

u
g
h
p
u
t 

(G
B
/s

)

# of CPU sockets or # HW-Engines

High-end baseline CIDR

128 GB/s

CIDR’s High Throughput Scalability

31 GB/s

102 GB/s

4+ socket
system?

CPU Baseline

Easier to scale
*Assume PCIe Gen. 4

• Scalable FPGA array for higher throughput



Conclusion

• CIDR co-optimizes SW/HW for efficient reduction

− Array of scalable PCIe-attached FPGAs

− Centralized metadata management on CPUs

− Novel SW/HW orchestration mechanism

• CIDR significantly outperforms the CPU baseline

− Scalable performance for 1+ Tbps with multiple HW-Engines

− 85+ % CPU utilization reduction

• More practical details are in the paper


