
Kelp: QoS for Accelerated Machine Learning Systems

Haishan Zhu1,3, David Lo2, Liqun Cheng2, Rama Govindaraju2, 
Parthasarathy Ranganathan2, and Mattan Erez1

1 The University of Texas at Austin  2Google  3Microsoft



Cost-Efficiency Drives WSCs

2

https://www.google.com/about/datacenters/efficiency/internal/

• Resource Utilization

• “Backfill” hardware resources causes interference

• Literatures report average between 10% to 50%

• Cost Amortization

• Power, cooling, resource management, etc.



Accelerated ML Systems in WSCs

• Wide adoption of accelerators in production WSCs

• GPU platforms are already popular in ML community

• ASIC and FPGA based solutions have been released and deployed

3

Balance the tradeoff between performance of accelerated 

workload and hardware resource utilization



Target Architecture

4

• Accelerator is used by a single ML task

• Prior work assumes time multiplexing accelerators [Chen, ASPLOS’16]

• Performance is mostly bottlenecked by accelerator memory BW

• ML task also occupies multiple CPU cores
• CPUs often in charge of assisting tasks that can’t be easily mapped to accelerators



CPU-Accelerator Interaction

• Examples of assisting computation

• Beam search

• Sorts partial solutions and expand on a subset of best candidates

• Data pre-processing (in-feed)

• Interprets and reshapes data to enable efficient processing by the accelerators

• Parameter server

• Broadcasts and updates parameters in distributed training

5

• Training workloads can scale out to multiple nodes
• Susceptible to resource interference due to “tail amplification” [Dean, 2013]



RNN Inference Server on TPU

6

• High performance sensitivity to DRAM interference

• Execution time for CPU-intensive phases increases significantly by 51%

• Service-level tail latency increase by over 70%

• Sub-millisecond interleaving among different steps

• Too fine-grained for polling-based reactive throttling

• Highlight the needs for robust hardware performance isolation mechanism



Platforms and Workloads

7

Platform Workload Description

CPU-Accelerator 

Interaction

TPU RNN1 Inference Natural language processing Beam search

CloudTPU CNN1 Training Image recognition Data in-feed

CloudTPU CNN2 Training Image recognition Data in-feed

GPU CNN3 Training Image recognition Parameter server

• Requests for RNN1 inference are processed in pipeline

• Target throughput is the knee of the tail latency curve

• CNN1 and CNN2 training on CloudTPU

• Both rely on host CPU for data infeed operations

• GPU platforms are widely used in ML community

• CNN3 uses distributed Tensorflow with host handling parameter server



Interference Sensitivity

8

• Two types of aggressors

• LLC contends for in-pipeline resources, private caches, and LLC

• DRAM contends for host DRAM BW by traversing a large array

• ML workloads show higher sensitivity to DRAM aggressor

• LLC causes 14% performance degradation

• DRAM causes a dramatic 40% performance degradation

Performance interference caused by DRAM BW contention dominates the 

performance degradation



KELP: A PERFORMANCE ISOLATION RUNTIME SYSTEM

9



Kelp Mechanism: NUMA Subdomain

10

• Existing feature in Intel processors

• Sub-NUMA Clustering (Skylake) or Cluster-on-Die (Haswell)

• Expose two NUMA domains from each socket

• Memory traffic within a NUMA subdomain handled by its own memory controller

• Dedicate separate subdomain to ML and CPU tasks

• Achieves memory isolation through channel partitioning



Kelp Mechanism: Memory Pressure & Management

11

• Busy memory controller will broadcast a distress signal to all cores

• Throttle cores to avoid unnecessary congestion in interconnect

• Void benefits of memory isolation

• Manage memory pressure by toggling L2 prefetchers

• Measure memory pressure using uncore performance counter

• Toggle L2 prefetchers to keep memory pressure under threshold



Kelp Mechanism: Manage Memory Pressure

12

• Unmanaged memory pressure causes significant performance loss

• Up to 14% QPS loss and 16% tail latency increase

• Turning prefetchers off effectively eliminate this effect in most cases

• Less than 3% performance loss with 60% prefetchers turned off



Kelp Mechanism: Backfilling

• NUMA subdomain coarsely segment CPU resources

• Cores, Last-level cache, memory BW, etc.

• Backfill high priority subdomain with CPU tasks

• Conservatively schedule jobs to limit the amount of interference on ML task

13



Kelp Runtime

14

Core Core Core Core Core

ML Task CPU Task CPU Task

High priority

Subdomain

Low priority

Subdomain

Kelp Runtime

Core Core Core

Cgroup interface

Scheduler Runtime

ML Task

Profile

• Scheduler assign tasks to the node

• High priority ML tasks are assigned to corresponding subdomain

• CPU tasks are prioritized to low priority subdomain 

• Application specific profile is loaded at runtime

• Specify high and low water marks for memory bandwidth, latency, 
and pressure



Kelp Runtime

15

Core Core Core Core Core

ML Task CPU Task CPU Task CPU Task

High priority

Subdomain

Low priority

Subdomain

Kelp Runtime

Core Core Core

Cgroup interface

Performance

Measurement

ML Task

Profile

• System performance is periodically sampled

• Socket-level memory bandwidth, latency, memory pressure

• High-priority subdomain memory bandwidth

• Kelp runtime reconfigures the system

• Measurements compared against watermarks specified in task profile

• Kelp reconfigures CPU masks and toggles L2 prefetchers

System

Reconfigure



Evaluation Methodology

• CPU Workloads

• Stream: artificial aggressor that iterate over a large array

• Stitch: image stitching for Google street view

• CPU ML: CPU-based training based on TensorFlow-Slim

• Configurations

• Baseline (BL)

• Contention unmanaged except for priority maintained by WSC scheduler

• CoreThrottle (CT)

• Limit number of cores and LLC partitions available to the CPU tasks [Lo, ISCA’15]

• Kelp Subdomain (KP-SD)

• Use NUMA Subdomain to isolate performance and manage memory pressure

• Kelp (KP)

• Full Kelp implementation with backfilling high priority subdomain

16



Case Study

• Workload Mix: CNN1 + Stitch

• CNN1 is highly sensitive to BW contention

• Stitch heavily contends for DRAM BW

17

6
0
%



Evaluation Result Summary

18



Result Summary

19

• Define “efficiency” to compare all configurations

•



Socket 0

CPU Design Challenges

• Remote memory performance interference

• Remote DRAM traffic can cause surprisingly large performance degradation

20

Core Core

ML ask

Memory 

Controller

Socket 1

Core Core

Remote DRAM

Memory 

Controller

Remote DRAM

Data

Inter-socket interface



CPU Design Challenges

• Remote memory performance interference

• Remote DRAM traffic can cause surprisingly large performance degradation

21

CNN1 CNN2



Conclusion

• Investigate memory resource interference on accelerated ML platforms

• Identify fine time granular host-accelerator interaction

• Show high sensitivity to CPU memory resource contention and low sensitivity to core 
resources contention

• Kelp: a runtime solution that mitigates performance interference using existing 
CPU features

• NUMA subdomain and memory pressure monitoring to achieve performance isolation

• Improve efficiency compared to previous work by 17%

• Demonstrate multiple challenges posed by high-performance accelerators

• Fine-grained memory performance isolation can further improve system efficiency

22


