Kelp: QoS for Accelerated Machine Learning Systems

Haishan Zhu1,3, David Lo2, Liqun Cheng2, Rama Govindaraju2, Parthasarathy Ranganathan2, and Mattan Erez1

1 The University of Texas at Austin 2Google 3Microsoft
Cost-Efficiency Drives WSCs

• **Cost Amortization**
 • Power, cooling, resource management, etc.

https://www.google.com/about/datacenters/efficiency/internal/

• **Resource Utilization**
 • “Backfill” hardware resources causes interference
 • Literatures report average between 10% to 50%
Accelerated ML Systems in WSCs

- Wide adoption of accelerators in production WSCs
 - GPU platforms are already popular in ML community
 - ASIC and FPGA based solutions have been released and deployed

Balance the tradeoff between performance of accelerated workload and hardware resource utilization
Accelerator is used by a single ML task
- Prior work assumes time multiplexing accelerators [Chen, ASPLOS’16]
- Performance is mostly bottlenecked by accelerator memory BW
ML task also occupies multiple CPU cores
- CPUs often in charge of assisting tasks that can’t be easily mapped to accelerators
CPU-Accelerator Interaction

- Examples of assisting computation
 - Beam search
 - Sorts partial solutions and expand on a subset of best candidates
 - Data pre-processing (in-feed)
 - Interprets and reshapes data to enable efficient processing by the accelerators
 - Parameter server
 - Broadcasts and updates parameters in distributed training

- Training workloads can scale out to multiple nodes
 - Susceptible to resource interference due to “tail amplification” [Dean, 2013]
RNN Inference Server on TPU

- High performance sensitivity to DRAM interference
 - Execution time for CPU-intensive phases increases significantly by 51%
 - Service-level tail latency increase by over 70%
- Sub-millisecond interleaving among different steps
 - Too fine-grained for polling-based reactive throttling
 - Highlight the needs for robust hardware performance isolation mechanism
Platforms and Workloads

<table>
<thead>
<tr>
<th>Platform</th>
<th>Workload</th>
<th>Description</th>
<th>CPU-Accelerator Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPU</td>
<td>RNN1 Inference</td>
<td>Natural language processing</td>
<td>Beam search</td>
</tr>
<tr>
<td>CloudTPU</td>
<td>CNN1 Training</td>
<td>Image recognition</td>
<td>Data in-feed</td>
</tr>
<tr>
<td>CloudTPU</td>
<td>CNN2 Training</td>
<td>Image recognition</td>
<td>Data in-feed</td>
</tr>
<tr>
<td>GPU</td>
<td>CNN3 Training</td>
<td>Image recognition</td>
<td>Parameter server</td>
</tr>
</tbody>
</table>

- Requests for RNN1 inference are processed in pipeline
 - Target throughput is the knee of the tail latency curve
- **CNN1 and CNN2 training on CloudTPU**
 - Both rely on host CPU for data infeed operations
- **GPU platforms are widely used in ML community**
 - CNN3 uses distributed Tensorflow with host handling parameter server
Interference Sensitivity

- Two types of aggressors
 - LLC contends for in-pipeline resources, private caches, and LLC
 - DRAM contends for host DRAM BW by traversing a large array
- ML workloads show higher sensitivity to DRAM aggressor
 - LLC causes 14% performance degradation
 - DRAM causes a dramatic 40% performance degradation

Performance interference caused by DRAM BW contention dominates the performance degradation
KELP: A PERFORMANCE ISOLATION RUNTIME SYSTEM
Kelp Mechanism: NUMA Subdomain

- Existing feature in Intel processors
 - Sub-NUMA Clustering (Skylake) or Cluster-on-Die (Haswell)
- Expose two NUMA domains from each socket
 - Memory traffic within a NUMA subdomain handled by its own memory controller
 - Dedicate separate subdomain to ML and CPU tasks
 - Achieves memory isolation through channel partitioning
Kelp Mechanism: Memory Pressure & Management

- Busy memory controller will broadcast a distress signal to all cores
 - Throttle cores to avoid unnecessary congestion in interconnect
 - Void benefits of memory isolation
- Manage memory pressure by toggling L2 prefetchers
 - Measure memory pressure using uncore performance counter
 - Toggle L2 prefetchers to keep memory pressure under threshold
Unmanaged memory pressure causes significant performance loss
 - Up to 14% QPS loss and 16% tail latency increase
 - Turning prefetchers off effectively eliminate this effect in most cases
 - Less than 3% performance loss with 60% prefetchers turned off
Kelp Mechanism: Backfilling

- NUMA subdomain coarsely segment CPU resources
 - Cores, Last-level cache, memory BW, etc.
- Backfill high priority subdomain with CPU tasks
 - Conservatively schedule jobs to limit the amount of interference on ML task
Kelp Runtime

- Scheduler assign tasks to the node
 - High priority ML tasks are assigned to corresponding subdomain
 - CPU tasks are prioritized to low priority subdomain
- Application specific profile is loaded at runtime
 - Specify high and low water marks for memory bandwidth, latency, and pressure
Kelp Runtime

- System performance is periodically sampled
 - Socket-level memory bandwidth, latency, memory pressure
 - High-priority subdomain memory bandwidth
- Kelp runtime reconfigures the system
 - Measurements compared against watermarks specified in task profile
 - Kelp reconfigures CPU masks and toggles L2 prefetchers
Evaluation Methodology

- **CPU Workloads**
 - Stream: artificial aggressor that iterate over a large array
 - Stitch: image stitching for Google street view
 - CPU ML: CPU-based training based on TensorFlow-Slim

- **Configurations**
 - Baseline (BL)
 - Contention unmanaged except for priority maintained by WSC scheduler
 - CoreThrottle (CT)
 - Limit number of cores and LLC partitions available to the CPU tasks [Lo, ISCA'15]
 - Kelp Subdomain (KP-SD)
 - Use NUMA Subdomain to isolate performance and manage memory pressure
 - Kelp (KP)
 - Full Kelp implementation with backfilling high priority subdomain
Case Study

- **Workload Mix: CNN1 + Stitch**
 - CNN1 is highly sensitive to BW contention
 - Stitch heavily contends for DRAM BW
Evaluation Result Summary

![Evaluation Result Summary Diagram](image-url)
Result Summary

- Define “efficiency” to compare all configurations

\[\text{Efficiency} = \frac{\text{Perf gain of ML tasks}}{\text{Perf loss of CPU tasks}} \]
CPU Design Challenges

- Remote memory performance interference
 - Remote DRAM traffic can cause surprisingly large performance degradation
CPU Design Challenges

- Remote memory performance interference
 - Remote DRAM traffic can cause surprisingly large performance degradation
Conclusion

• Investigate memory resource interference on accelerated ML platforms
 • Identify fine time granular host-accelerator interaction
 • Show high sensitivity to CPU memory resource contention and low sensitivity to core resources contention

• Kelp: a runtime solution that mitigates performance interference using existing CPU features
 • NUMA subdomain and memory pressure monitoring to achieve performance isolation
 • Improve efficiency compared to previous work by 17%

• Demonstrate multiple challenges posed by high-performance accelerators
 • Fine-grained memory performance isolation can further improve system efficiency