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Cost-Efficiency Drives WSCs
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https://www.google.com/about/datacenters/efficiency/internal/

• Resource Utilization

• “Backfill” hardware resources causes interference

• Literatures report average between 10% to 50%

• Cost Amortization

• Power, cooling, resource management, etc.



Accelerated ML Systems in WSCs

• Wide adoption of accelerators in production WSCs

• GPU platforms are already popular in ML community

• ASIC and FPGA based solutions have been released and deployed
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Balance the tradeoff between performance of accelerated 

workload and hardware resource utilization



Target Architecture
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• Accelerator is used by a single ML task

• Prior work assumes time multiplexing accelerators [Chen, ASPLOS’16]

• Performance is mostly bottlenecked by accelerator memory BW

• ML task also occupies multiple CPU cores
• CPUs often in charge of assisting tasks that can’t be easily mapped to accelerators



CPU-Accelerator Interaction

• Examples of assisting computation

• Beam search

• Sorts partial solutions and expand on a subset of best candidates

• Data pre-processing (in-feed)

• Interprets and reshapes data to enable efficient processing by the accelerators

• Parameter server

• Broadcasts and updates parameters in distributed training
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• Training workloads can scale out to multiple nodes
• Susceptible to resource interference due to “tail amplification” [Dean, 2013]



RNN Inference Server on TPU
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• High performance sensitivity to DRAM interference

• Execution time for CPU-intensive phases increases significantly by 51%

• Service-level tail latency increase by over 70%

• Sub-millisecond interleaving among different steps

• Too fine-grained for polling-based reactive throttling

• Highlight the needs for robust hardware performance isolation mechanism



Platforms and Workloads
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Platform Workload Description

CPU-Accelerator 

Interaction

TPU RNN1 Inference Natural language processing Beam search

CloudTPU CNN1 Training Image recognition Data in-feed

CloudTPU CNN2 Training Image recognition Data in-feed

GPU CNN3 Training Image recognition Parameter server

• Requests for RNN1 inference are processed in pipeline

• Target throughput is the knee of the tail latency curve

• CNN1 and CNN2 training on CloudTPU

• Both rely on host CPU for data infeed operations

• GPU platforms are widely used in ML community

• CNN3 uses distributed Tensorflow with host handling parameter server



Interference Sensitivity
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• Two types of aggressors

• LLC contends for in-pipeline resources, private caches, and LLC

• DRAM contends for host DRAM BW by traversing a large array

• ML workloads show higher sensitivity to DRAM aggressor

• LLC causes 14% performance degradation

• DRAM causes a dramatic 40% performance degradation

Performance interference caused by DRAM BW contention dominates the 

performance degradation



KELP: A PERFORMANCE ISOLATION RUNTIME SYSTEM
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Kelp Mechanism: NUMA Subdomain
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• Existing feature in Intel processors

• Sub-NUMA Clustering (Skylake) or Cluster-on-Die (Haswell)

• Expose two NUMA domains from each socket

• Memory traffic within a NUMA subdomain handled by its own memory controller

• Dedicate separate subdomain to ML and CPU tasks

• Achieves memory isolation through channel partitioning



Kelp Mechanism: Memory Pressure & Management
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• Busy memory controller will broadcast a distress signal to all cores

• Throttle cores to avoid unnecessary congestion in interconnect

• Void benefits of memory isolation

• Manage memory pressure by toggling L2 prefetchers

• Measure memory pressure using uncore performance counter

• Toggle L2 prefetchers to keep memory pressure under threshold



Kelp Mechanism: Manage Memory Pressure
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• Unmanaged memory pressure causes significant performance loss

• Up to 14% QPS loss and 16% tail latency increase

• Turning prefetchers off effectively eliminate this effect in most cases

• Less than 3% performance loss with 60% prefetchers turned off



Kelp Mechanism: Backfilling

• NUMA subdomain coarsely segment CPU resources

• Cores, Last-level cache, memory BW, etc.

• Backfill high priority subdomain with CPU tasks

• Conservatively schedule jobs to limit the amount of interference on ML task
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Kelp Runtime
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• Scheduler assign tasks to the node

• High priority ML tasks are assigned to corresponding subdomain

• CPU tasks are prioritized to low priority subdomain 

• Application specific profile is loaded at runtime

• Specify high and low water marks for memory bandwidth, latency, 
and pressure



Kelp Runtime
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• System performance is periodically sampled

• Socket-level memory bandwidth, latency, memory pressure

• High-priority subdomain memory bandwidth

• Kelp runtime reconfigures the system

• Measurements compared against watermarks specified in task profile

• Kelp reconfigures CPU masks and toggles L2 prefetchers

System

Reconfigure



Evaluation Methodology

• CPU Workloads

• Stream: artificial aggressor that iterate over a large array

• Stitch: image stitching for Google street view

• CPU ML: CPU-based training based on TensorFlow-Slim

• Configurations

• Baseline (BL)

• Contention unmanaged except for priority maintained by WSC scheduler

• CoreThrottle (CT)

• Limit number of cores and LLC partitions available to the CPU tasks [Lo, ISCA’15]

• Kelp Subdomain (KP-SD)

• Use NUMA Subdomain to isolate performance and manage memory pressure

• Kelp (KP)

• Full Kelp implementation with backfilling high priority subdomain
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Case Study

• Workload Mix: CNN1 + Stitch

• CNN1 is highly sensitive to BW contention

• Stitch heavily contends for DRAM BW
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Evaluation Result Summary
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Result Summary
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• Define “efficiency” to compare all configurations

•



Socket 0

CPU Design Challenges

• Remote memory performance interference

• Remote DRAM traffic can cause surprisingly large performance degradation
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CPU Design Challenges

• Remote memory performance interference

• Remote DRAM traffic can cause surprisingly large performance degradation
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Conclusion

• Investigate memory resource interference on accelerated ML platforms

• Identify fine time granular host-accelerator interaction

• Show high sensitivity to CPU memory resource contention and low sensitivity to core 
resources contention

• Kelp: a runtime solution that mitigates performance interference using existing 
CPU features

• NUMA subdomain and memory pressure monitoring to achieve performance isolation

• Improve efficiency compared to previous work by 17%

• Demonstrate multiple challenges posed by high-performance accelerators

• Fine-grained memory performance isolation can further improve system efficiency
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