

Kelp: QoS for Accelerated Machine Learning Systems

Haishan Zhu^{1,3}, David Lo², Liqun Cheng², Rama Govindaraju², Parthasarathy Ranganathan², and Mattan Erez¹

¹ The University of Texas at Austin ²Google ³Microsoft

- Cost Amortization
 - Power, cooling, resource management, etc.

- Resource Utilization
 - "Backfill" hardware resources causes interference
 - Literatures report average between 10% to 50%

2

Accelerated ML Systems in WSCs

- Wide adoption of accelerators in production WSCs
 - GPU platforms are already popular in ML community
 - ASIC and FPGA based solutions have been released and deployed

Balance the tradeoff between performance of accelerated workload and hardware resource utilization

3

ľEXAS

Target Architecture

- Accelerator is used by a single ML task
 - Prior work assumes time multiplexing accelerators [Chen, ASPLOS'16]
 - Performance is mostly bottlenecked by accelerator memory BW
- ML task also occupies multiple CPU cores •
 - CPUs often in charge of assisting tasks that can't be easily mapped to accelerators

CPU-Accelerator Interaction

- Examples of assisting computation
 - Beam search
 - Sorts partial solutions and expand on a subset of best candidates
 - Data pre-processing (in-feed)
 - Interprets and reshapes data to enable efficient processing by the accelerators
 - Parameter server
 - Broadcasts and updates parameters in distributed training

- Training workloads can scale out to multiple nodes
 - Susceptible to resource interference due to "tail amplification" [Dean, 2013]

RNN Inference Server on TPU

- High performance sensitivity to DRAM interference
 - Execution time for CPU-intensive phases increases significantly by 51%
 - Service-level tail latency increase by over 70%
- Sub-millisecond interleaving among different steps
 - Too fine-grained for polling-based reactive throttling
 - Highlight the needs for robust hardware performance isolation mechanism

6

Platform	Workload	Description	CPU-Accelerator Interaction
TPU	RNN1 Inference	Natural language processing	Beam search
CloudTPU	CNN1 Training	Image recognition	Data in-feed
CloudTPU	CNN2 Training	Image recognition	Data in-feed
GPU	CNN3 Training	Image recognition	Parameter server

- Requests for RNN1 inference are processed in pipeline
 - Target throughput is the knee of the tail latency curve
- CNN1 and CNN2 training on CloudTPU
 - Both rely on host CPU for data infeed operations
- GPU platforms are widely used in ML community
 - CNN3 uses distributed Tensorflow with host handling parameter server

Interference Sensitivity

- Two types of aggressors
 - **LLC** contends for in-pipeline resources, private caches, and LLC
 - **DRAM** contends for host DRAM BW by traversing a large array
- ML workloads show higher sensitivity to **DRAM** aggressor
 - **LLC** causes 14% performance degradation
 - **DRAM** causes a dramatic 40% performance degradation

Performance interference caused by DRAM BW contention dominates the performance degradation

9

KELP: A PERFORMANCE ISOLATION RUNTIME SYSTEM

10

Kelp Mechanism: NUMA Subdomain

- Existing feature in Intel processors
 - Sub-NUMA Clustering (Skylake) or Cluster-on-Die (Haswell)
- Expose two NUMA domains from each socket
 - Memory traffic within a NUMA subdomain handled by its own memory controller
 - Dedicate separate subdomain to ML and CPU tasks
 - Achieves memory isolation through channel partitioning

Kelp Mechanism: Memory Pressure & Management

- Busy memory controller will broadcast a distress signal to all cores
 - Throttle cores to avoid unnecessary congestion in interconnect
 - Void benefits of memory isolation
- Manage memory pressure by toggling L2 prefetchers
 - Measure memory pressure using uncore performance counter
 - Toggle L2 prefetchers to keep memory pressure under threshold

TEXAS

Kelp Mechanism: Manage Memory Pressure

- Unmanaged memory pressure causes significant performance loss
 - Up to 14% QPS loss and 16% tail latency increase
- Turning prefetchers off effectively eliminate this effect in most cases
 - Less than 3% performance loss with 60% prefetchers turned off

Kelp Mechanism: Backfilling

- NUMA subdomain coarsely segment CPU resources
 - Cores, Last-level cache, memory BW, etc.
- Backfill high priority subdomain with CPU tasks
 - Conservatively schedule jobs to limit the amount of interference on ML task

13

Profile

• High priority ML tasks are assigned to corresponding subdomain

Kelp Runtime

- CPU tasks are prioritized to low priority subdomain
- Application specific profile is loaded at runtime
 - Specify high and low water marks for memory bandwidth, latency, and pressure

14

ГEXAS

Kelp Runtime

- System performance is periodically sampled
 - Socket-level memory bandwidth, latency, memory pressure
 - High-priority subdomain memory bandwidth
- Kelp runtime reconfigures the system
 - Measurements compared against watermarks specified in task profile
 - Kelp reconfigures CPU masks and toggles L2 prefetchers

15

ΈXAS

Evaluation Methodology

- CPU Workloads
 - Stream: artificial aggressor that iterate over a large array
 - Stitch: image stitching for Google street view
 - CPU ML: CPU-based training based on TensorFlow-Slim
- Configurations
 - Baseline (BL)
 - Contention unmanaged except for priority maintained by WSC scheduler
 - CoreThrottle (CT)
 - Limit number of cores and LLC partitions available to the CPU tasks [Lo, ISCA'15]
 - Kelp Subdomain (KP-SD)
 - Use NUMA Subdomain to isolate performance and manage memory pressure
 - Kelp (KP)
 - Full Kelp implementation with backfilling high priority subdomain

TEXAS

Case Study

- Workload Mix: CNN1 + Stitch
 - CNN1 is highly sensitive to BW contention
 - Stitch heavily contends for DRAM BW

Evaluation Result Summary

18

• Define "efficiency" to compare all configurations

• Efficiency =
$$\frac{\text{Perf gain of ML tasks}}{\text{Perf loss of CPU tasks}}$$

- Remote memory performance interference
 - Remote DRAM traffic can cause surprisingly large performance degradation

Inter-socket interface

20

ΓΕΧΑS

CPU Design Challenges

- Remote memory performance interference
 - Remote DRAM traffic can cause surprisingly large performance degradation

21

22

Conclusion

- Investigate memory resource interference on accelerated ML platforms
 - Identify fine time granular host-accelerator interaction
 - Show high sensitivity to CPU memory resource contention and low sensitivity to core resources contention
- Kelp: a runtime solution that mitigates performance interference using existing CPU features
 - NUMA subdomain and memory pressure monitoring to achieve performance isolation
 - Improve efficiency compared to previous work by 17%
- Demonstrate multiple challenges posed by high-performance accelerators
 - Fine-grained memory performance isolation can further improve system efficiency