Featherlight Reuse-distance

Measurement

Qingsen Wang, Xu Liu Milind Chabbi
College of William & Mary Scalable Machines Research

February HPCA'19 RDX

Run on Modern Memory Hierarchy

-Complex memory hierarchy

Processor Core Processor Core

L1l L1D L1l L1D

L3

Memory

- The working set size of programs keeps
growing

Managing data locality becomes more and more
important to memory/cache performance

February HPCA'19 RDX

Quantify Data Locality

cReuse distance

o Stack reuse distance, stack distance

> The number of distinct memory locations between two
consecutive uses (of the same memory location)

use reuse

a o bX XWX a

>
memory acCcess

sequence

If cache size <= 2, the reuse of a will trigger a cache miss.
> Highly related to cache miss ratio

> Focus on reuse distance of the whole program

February HPCA'19 RDX

Quantify Data Locality

-Why reuse distance?
o Software metric independent from hardware
- Performance prediction and analysis
o Cache simulation
> Program phase prediction
o Code optimization

O o 00

February HPCA'19 RDX

Profile Reuse Distance

- Profiling reuse distance of the whole program
IS costly
o Exhaustive instrumentation tool: 100X~1000X slowdown

o Qur solution — RDX

> A sampling-based profiler to measure reuse distance of the
whole program aided by hardware

> No instrumentation

> No recompilation

- Low overhead: ~5%(time), ~7%(memory)
> High accuracy: >90%

February HPCA'19 RDX

RDX — Design Overview

Sample memory
access address

Measure time
distance of the

sampled address

Time distance =
reuse distance

February HPCA'19 RDX

RDX — Sample Memory Access

Sample memory
access address

February HPCA'19 RDX

RDX — Sample Memory Access

- Performance Monitor Units (PMU)

> Available in commodity CPUs

> Monitor hardware events
e.g. CPU cycles, instructions, L1D cache misses

o Count the occurrence of an event

o Interrupt the program when the monitored event’'s
occurrence reaches the expected number

l.e., PMU sample

-RDX counts/samples LOAD and STORE
events

- Each PMU sample comes with the corresponding memory
reference location (e.g., effective address from Intel PEBS)

February HPCA'19 RDX

RDX — Sample Memory Access

» Use Performance Monitor Units (PMU) to
Sample memory sample LOAD and STORE instructions

e oSISSRC (0 [0 IS (0 e oo effective address of each access

February HPCA'19 RDX

RDX — Measure Time Distance

Measure time

distance of the
sampled address

February HPCA'19 RDX

RDX — Measure Time Distance

- Time distance
> The number of memory accesses since last use

1 2 3 4 5 6

a b b b a
>
1. 8 10 11 12 14 memory access
6 sequence
14 —8=6

-\Why time distance?

> No need to maintain history to remove duplicates
> Cheaper to measure than reuse distance.

February HPCA'19 RDX

RDX — Measure Time Distance

-Debug register
> Available on most commodity CPUs

> Subscribe
Monitor a memory location
o Trap
Interrupt the program once the monitored memory location is accessed

February HPCA'19 RDX

RDX — Measure Time Distance

-Use debug register to measure time distance
- PMU samples every 100 memory references.

2927222227272 ..
memory acce;s

SeqNo. 1 2 .. 99 100 101 - 199 200 201 --- 232 233 234 --

debug registers
February HPCA'19 RDX

RDX — Measure Time Distance

-Use debug register to measure time distance
- PMU samples every 100 memory references.

M
P A ? 27 2D ..

memory aCCess

SeqNo. 1 2 .. 99 100 101 - 199 200 201 --- 232 233 234 --

debug registers
February HPCA'19 RDX

RDX — Measure Time Distance

-Use debug register to measure time distance

- PMU samples every 100 memory references.
PMUS
Mpje

2 a7 .72 €72 .72 72 92 ..
memory acce;s

SeqNo. 1 2 .. 99 100 101 - 199 200 201 --- 232 233 234 --

| a,100 l ‘ e, 200 |

debug registers
February HPCA'19 RDX

RDX — Measure Time Distance

-Use debug register to measure time distance
- PMU samples every 100 memory references.

?

a7 . ?

Seq No.

a,100 ‘ e, 200 |

debug registers

February

99 100 101 --

HPCA'19 RDX

232

MOory aCCess

234 ...

RDX — Measure Time Distance

-Use debug register to measure time distance
- PMU samples every 100 memory references.

2 a2 ..72 e92..2a|? ..

memory aCCess

233| 234 -

Seq No.

99 100 101 --

a,100 ‘ e, 200 |

debug registers
February HPCA'19 RDX

232

Time distance of ad Is 233-100=133

RDX — Measure Time Distance

Measure time

» Use debug registers to detect the reuse

distance of the position of a memory location

sampled address

February HPCA'19 RDX

RDX — Time = Reuse

Time distance =
reuse distance

February HPCA'19 RDX

RDX — Time = Reuse

-How Is time distance related to stack
distance?

? P27

>
memory aCCess

Tima ditanca | Occurrnce
1 3

5

February HPCA'19 RDX

RDX — Time = Reuse

-How Is time distance related to stack
distance?

abbbb a

memory aCCess

i isance | Occurence [N vevse csance | _Occurence
1 3 0 3

S 1 1 1

February HPCA'19 RDX

RDX — Time = Reuse

-How Is time distance related to stack
distance?

ab bbb a

memory aCCess

® Not feasible to enumerate all the .

possibilities for real programs

February HPCA'19 RDX

RDX — Time = Reuse

- Statistically convert time distance to reuse
distance

Locality Approximation Using Time (POPL’07)

. A data element is accessed independently from
Assumption C :
others, which is a Bernoulli process.

Input Time distance histogram, max working size
Output Stack distance histogram

February HPCA'19 RDX

RDX — Time = Reuse

_ _ Each data location is accessed
Time distance 2 Bt E S Ea

reuse distance - Statistically estimate reuse distance
histogram from time distance

February HPCA'19 RDX

RDX — Review

» Use Performance Monitor Units (PMU) to
Sample memory sample LOAD and STORE instructions

e oSISSRC (0 [0 IS (0 e oo effective address of each access

Measure time

» Use debug registers to detect the reuse

distance of the position of a memory location

sampled address

_ _ Each data location is accessed
Time distance 2 BREE a0y

reuse distance - Statistically estimate reuse distance
histogram from time distance

February HPCA'19 RDX

Challenge

PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[i] = 0;

}

// All elements of A are

// reused

for (int 3J=1; 3J<=10K; J++) {
Alj] = 0;

debug registers

February HPCA'19 RDX

Challenge

PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
Al1] = 0;] i=1K

}

// All elements of A are

// reused

for (int 3J=1; 3J<=10K; J++) {
Alj] = 0;

debug registers

February HPCA'19 RDX

Challenge

PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
Al1] = 0;] i=2K

}

// All elements of A are

// reused

for (int 3J=1; 3J<=10K; J++) {
Alj] = 0;

debug registers

February HPCA'19 RDX

Challenge

PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
Al1] = 0;] i=3K

A[1K] A[2K]

A[3K] | I

debug registers

}
// All elements of A are

// reused
for (int j=1; J<=10K; J++) {
Alj] = 0;

February HPCA'19 RDX

Challenge

A[1K] A[2K]

A[3K] A[4K]

debug registers

February

PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
Al1] = 0;] i=4K

}

// All elements of A are

// reused

for (int 3J=1; 3J<=10K; J++) {
Alj] = 0;

HPCA'19 RDX

Challenge

PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
Al1] = 0;]| i=5K

A[1K] A[2K]

}

// All elements of A are

// reused

for (int 3J=1; 3J<=10K; J++) {
Alj] = 0;

A[3K] A[4K]

debug registers

A [5K]

February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers

o Strategy: replace the oldest one
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[1] = 0; i=5K

A[1K] A[2K]

}
// All elements of A are

// reused
for (int j=1; J<=10K; J++) {
Alj] = 0;

A[3K] A[4K]

debug registers

? }

A [5K]

February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers

o Strategy: replace the oldest one
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[1] = 0; i=5K

A[5K] A[2K]

}
// All elements of A are

// reused
for (int j=1; J<=10K; J++) {
Alj] = 0;

A[3K] A[4K]

debug registers

J

February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers

o Strategy: replace the oldest one
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[i] = 0;

A[5K] A[6K]

}
// All elements of A are

// reused
for (int j=1; J<=10K; J++) {
Alj] = 0;

A[3K] A[4K]

debug registers

J

February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers

o Strategy: replace the oldest one
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[i] = 0;

A[5K] A[6K]

}
// All elements of A are

// reused
for (int j=1; J<=10K; J++) {
Alj] = 0;

A[7K] A[4K]

debug registers

J

February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers

o Strategy: replace the oldest one
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[i] = 0;

A[5K] A[6K]

}
// All elements of A are

// reused
for (int j=1; J<=10K; J++) {
Alj] = 0;

A[7K] A[8K]

debug registers

J

February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers

o Strategy: replace the oldest one
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[1] = 0;

A[9K] A[6K] }

// All elements of A are

// reused

for (int J=1; J<=10K; j++) {
Alj] = 0;

J

A[8K]

A[T7K]

debug registers

HPCA'19 RDX

February

Challenge

-Handle a limited number of debug registers

o Strategy: replace the oldest one
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[i] = 0;

// All elements of A are

// reused

for (int J=1; J<=10K; j++) {
Alj] = 0;

J

A[8K]

A[T7K]

debug registers

HPCA'19 RDX

February

Challenge

-Handle a limited number of debug registers
o Strategy: replace the oldest one

PM

U samples every 1K memory stores

A[9K]

A[8K]

A[T7K]

debug registers

for (int 1=1; 1<=10K; 1i++) {
Al1] = 0;

}

// All elements of A are

// reused

for (int 3J=1; 3J<=10K; J++) {

Al[j] = 0;| J=1K

J

Wait? We should have detected a reuse of
A[1K] if it were not kicked out from debug

registers.
HPCA'19 RDX

February

Challenge

-Handle a limited number of debug registers
o Strategy: replace the oldest one
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[i] = 0;

|
\

1re

/| We CANNOT detect any reuse of A J++)

Wait? We should have detected a reuse of
A[1K] if it were not kicked out from debug

registers.
February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers
o Strategy: probabillistically get monitored
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {

A[1] = 0; i=5K
A[1K] A[2K] }
// All elements of A are
A[3K] A[4K] // reused
for (int 3J=1; 3J<=10K; J++) {
Alj] = 0;

J

February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers
o Strategy: probabillistically get monitored

A[1K] A[2K]

A[5K] A[4K]

debug registers

February

PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[1] = 0; i=5K

}

// All elements of A are

// reused

for (int 3J=1; 3J<=10K; J++) {
Alj] = 0;

}

HPCA'19 RDX

Challenge

-Handle a limited number of debug registers
o Strategy: probabillistically get monitored
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {

A[1] = 0; i=6K
A[1K] A[2K] }
// All elements of A are
A[5K] A[4K] // reused
for (int 3J=1; 3J<=10K; J++) {
Alj] = 0;

J

February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers
o Strategy: probabillistically get monitored
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {

A[1] = 0; i=6K
A[1K] A[2K] }
// All elements of A are
A[5K] A[4K] // reused
for (int 3J=1; 3J<=10K; J++) {
Alj] = 0;

J

February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers
o Strategy: probabillistically get monitored
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[i] = 0;

}

// All elements of A are

// reused

for (int 3J=1; 3J<=10K; J++) {
Al7J] = 0;| j=1K

debug registers

J

February HPCA'19 RDX

Challenge

-Handle a limited number of debug registers
o Strategy: probabillistically get monitored
PMU samples every 1K memory stores

for (int 1=1; 1<=10K; 1i++) {
A[1] = 0;

}

// All elements of A are

// reused

for (int 3=1; 3<=10K; jJ++) {

~~ Al7J] = 0;| j=1K

J

Reservoir If there is a free reqister, use it.
Sampling Otherwise, probabilistically replace one of monitored addresses

February HPCA'19 RDX

Evaluation on SPEC CPU2006

-Overhead
o ~5%(time), ~5MB / thread (memory)

° Accuracy
- Baseline: Intel PIN tool instruments every memory access

- How similar a measured (estimated) histogram is to the

baseline?
25%

20%
15%

5%
| I » |||_

February

Evaluation on SPEC CPU2006

- Similarity
S € [0,1]
> § = 1, exactly the same

70%

60%

50%

40%

30%

20%

10%

0%

0.8

2

February HPCA'19 RDX

Evaluation on SPEC CPU2006

-Time distance histogram accuracy
> Median > 96%

> Stack distance histogram accuracy
> Median > 90%

cInaccuracy reason
o Sparse reservoir sampling
> Model problem
- PMU imprecision

February HPCA'19 RDX

Evaluation on SPEC CPU2006

Estimated Stack Reuse Histogram

0.6} B Ground truth
e Estimated

0.5}

0.4}

0.3t

0.2}

0.1t ' .

0.0 : : __r\#%-_‘

o % 25 8 2R B 2 E Y E 25 B 2
A X A % % ';g < Z Z

milc (SPEC CPU2006)

February HPCA'19 RDX

Evaluation on SPEC CPU2017
> First to study data locality of SPEC CPU2017

> Plot stack reuse histograms of all individual
benchmarks

°SPEC CPU2006 vs. 2017

- SPEC CPU2006 (4xx series)
> SPEC CPU2017 speed (6xx series)

February HPCA'19 RDX

SPEC CPU2006 - 2017

- Unchanged
1.0

B 481.wrf
0.8 mm 621.wrf s

0.6}
0.4}

0.2}

0.0

o

2 2 5 8 2
A AN A

February HPCA'19 RDX

ABCT
NM9GC
ACTS
INT
INC
Nt
IN8
INOT

SPEC CPU2006 - 2017

-Reuse distance has increased dramatically

1.0
EEN 470.1bm
0.8 B 619.1bm_s
0.6}
0.4; >
0.2¢ |
S e e e 2B EELRER D O
ARREER 222EED

February HPCA'19 RDX

SPEC CPU2006 - 2017

- Reuse distance has decreased

1.0
B 429.mcf
0.8 BEE 605.mcf s
o.j-
0.4¢
0.2
. x%s&%s&&ggg%%“h
A A A %0 % ';% < < £<K

February HPCA'19 RDX

Code Optimization

o Strategy

> Pinpoint high-penalty cache misses
> Analyze with reuse distance

-Speedup overview

Improve S Speed-
d locality

lulesh temporal fuse loops 1.54X
spatial & . : : e
botsspar interchange loop iterations within a nested loop 3.45X
temporal

backprop Spatial interchange loop iterations within a nested loop 1.52X
srad_v1 Spatial interchange loop iterations within a nested loop 1.80X

sweep3d spatial transpose arrays 1.04X

February HPCA'19 RDX

Conclusions

- RDX

o Lightweight, sampling-based
- Measures time & stack distance of the whole program

> Guides optimization related to locality and cache
performance

> Relies on hardware performance units and hardware debug
registers

-Characterization @@] estions?

o SPEC CPU2006
> SPEC CPU2017

- Optimization

February HPCA'19 RDX

