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Run on Modern Memory Hierarchy

◦Complex memory hierarchy

◦The working set size of programs keeps 
growing

2

Managing data locality becomes more and more 
important to memory/cache performance
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Quantify Data Locality

◦Reuse distance
◦ Stack reuse distance, stack distance

◦ The number of distinct memory locations between two 
consecutive uses (of the same memory location)

◦ Highly related to cache miss ratio

◦ Focus on reuse distance of the whole program
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⋯ a c b c b b a ⋯

2

memory access 
sequence 

If cache size <= 2, the reuse of a will trigger a cache miss.  

?

use reuse
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Quantify Data Locality

◦Why reuse distance?
◦ Software metric independent from hardware

◦ Performance prediction and analysis

◦ Cache simulation

◦ Program phase prediction

◦ Code optimization

◦⋯
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Profile Reuse Distance

◦Profiling reuse distance of the whole program 
is costly
◦ Exhaustive instrumentation tool: 100X~1000X slowdown

◦Our solution – RDX
◦ A sampling-based profiler to measure reuse distance of the 

whole program aided by hardware

◦ No instrumentation

◦ No recompilation

◦ Low overhead: ~5%(time), ~7%(memory)

◦ High accuracy: >90%
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RDX – Design Overview
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• Use Performance Monitor Units (PMU) to 
sample LOAD and STORE instructions

• Record effective address of each access

Sample memory 
access address

• Use debug registers to detect the reuse 
position of a memory location

Measure time 
distance of the 

sampled address

• Each data location is accessed 
independently

• Statistically estimate reuse distance 
histogram from time distance

Time distance →
reuse distance
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RDX – Sample Memory Access
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• Use Performance Monitor Units (PMU) to 
sample LOAD and STORE instructions

• Record effective address of each access

Sample memory 
access address

• Use debug registers to detect the reuse 
position of a memory location

Measure time 
distance of the 

sampled address

• Each data location is accessed 
independently

• Statistically estimate reuse distance 
histogram from time distance

Time distance →
reuse distance
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RDX – Sample Memory Access

◦Performance Monitor Units (PMU)
◦ Available in commodity CPUs

◦ Monitor hardware events

e.g. CPU cycles, instructions, L1D cache misses

◦ Count the occurrence of an event

◦ Interrupt the program when the monitored event’s 
occurrence reaches the expected number

i.e., PMU sample

◦RDX counts/samples LOAD and STORE 
events
◦ Each PMU sample comes with the corresponding memory 

reference location (e.g., effective address from Intel PEBS)
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RDX – Sample Memory Access
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• Use Performance Monitor Units (PMU) to 
sample LOAD and STORE instructions

• Record effective address of each access

Sample memory 
access address

• Use debug registers to detect the reuse 
position of a memory location

Measure time 
distance of the 

sampled address

• Each data location is accessed 
independently

• Statistically estimate reuse distance 
histogram from time distance

Time distance →
reuse distance
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RDX – Measure Time Distance
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• Use Performance Monitor Units (PMU) to 
sample LOAD and STORE instructions

• Record effective address of each access

Sample memory 
access address

• Use debug registers to detect the reuse 
position of a memory location

Measure time 
distance of the 

sampled address

• Each data location is accessed 
independently

• Statistically estimate reuse distance 
histogram from time distance

Time distance →
reuse distance
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RDX – Measure Time Distance

◦Time distance
◦ The number of memory accesses since last use

◦Why time distance?
◦ No need to maintain history to remove duplicates

◦ Cheaper to measure than reuse distance.
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⋯ a c b c b b a ⋯

6

memory access 
sequence 

1 2 3 4 5 6

9 10 11 12 13 1481 ⋯

14 − 8 = 6
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RDX – Measure Time Distance

◦Debug register
◦ Available on most commodity CPUs

◦ Subscribe

Monitor a memory location

◦ Trap

Interrupt the program once the monitored memory location is accessed

12
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⋯ ? ? ? ⋯ ? ? ? ⋯ ? ? ? ⋯

RDX – Measure Time Distance

◦Use debug register to measure time distance
◦ PMU samples every 100 memory references.

13

1 2 ⋯ 99 100 101 ⋯ 199 200 201 ⋯ 232 233 234 ⋯

memory access

Seq No.

debug registers
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⋯ ? ? ? ⋯ ? ? ? ⋯ ? ? ? ⋯

RDX – Measure Time Distance

◦Use debug register to measure time distance
◦ PMU samples every 100 memory references.
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1 2 ⋯ 99 100 101 ⋯ 199 200 201 ⋯ 232 233 234 ⋯

memory access

Seq No.

debug registers

a,100

a
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⋯ ? ? ? ⋯ ? ? ? ⋯ ? ? ? ⋯

RDX – Measure Time Distance

◦Use debug register to measure time distance
◦ PMU samples every 100 memory references.
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1 2 ⋯ 99 100 101 ⋯ 199 200 201 ⋯ 232 233 234 ⋯

memory access

Seq No.

debug registers

a,100 e, 200

a e



HPCA’19 RDXFebruary

⋯ ? ? ? ⋯ ? ? ? ⋯ ? ? ? ⋯

RDX – Measure Time Distance

◦Use debug register to measure time distance
◦ PMU samples every 100 memory references.
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1 2 ⋯ 99 100 101 ⋯ 199 200 201 ⋯ 232 233 234 ⋯

memory access

Seq No.

debug registers

a,100 e, 200

a e a
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⋯ ? ? ? ⋯ ? ? ? ⋯ ? ? ? ⋯

RDX – Measure Time Distance

◦Use debug register to measure time distance
◦ PMU samples every 100 memory references.
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1 2 ⋯ 99 100 101 ⋯ 199 200 201 ⋯ 232 233 234 ⋯

memory access

Seq No.

debug registers

Time distance of a is 233-100=133
a,100 e, 200

a e a
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RDX – Measure Time Distance

18

• Use Performance Monitor Units (PMU) to 
sample LOAD and STORE instructions

• Record effective address of each access

Sample memory 
access address

• Use debug registers to detect the reuse 
position of a memory location

Measure time 
distance of the 

sampled address

• Each data location is accessed 
independently

• Statistically estimate reuse distance 
histogram from time distance

Time distance →
reuse distance
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RDX – Time → Reuse
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• Use Performance Monitor Units (PMU) to 
sample LOAD and STORE instructions

• Record effective address of each access

Sample memory 
access address

• Use debug registers to detect the reuse 
position of a memory location

Measure time 
distance of the 

sampled address

• Each data location is accessed 
independently

• Statistically estimate reuse distance 
histogram from time distance

Time distance →
reuse distance
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RDX – Time → Reuse

◦How is time distance related to stack 
distance?

20

? ? ? ? ? ?

memory access

Time distance Occurrence

1 3

5 1
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RDX – Time → Reuse

◦How is time distance related to stack 
distance?
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a b b b b a

memory access

Time distance Occurrence

1 3

5 1

Reuse distance Occurrence

0 3

1 1
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RDX – Time → Reuse

◦How is time distance related to stack 
distance?

22

a b b b b a

memory access

Time distance Occurrence

1 3

5 1

Reuse distance Occurrence

0 3

1 1

Not feasible to enumerate all the 
possibilities for real programs
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RDX – Time → Reuse

◦Statistically convert time distance to reuse 
distance

23

Locality Approximation Using Time (POPL’07)

Assumption
A data element is accessed independently from 
others, which is a Bernoulli process.

Input Time distance histogram, max working size

Output Stack distance histogram
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RDX – Time → Reuse
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• Use Performance Monitor Units (PMU) to 
sample LOAD and STORE instructions

• Record effective address of each access

Sample memory 
access address

• Use debug registers to detect the reuse 
position of a memory location

Measure time 
distance of the 

sampled address

• Each data location is accessed 
independently

• Statistically estimate reuse distance 
histogram from time distance

Time distance →
reuse distance
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RDX – Review
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• Use Performance Monitor Units (PMU) to 
sample LOAD and STORE instructions

• Record effective address of each access

Sample memory 
access address

• Use debug registers to detect the reuse 
position of a memory location

Measure time 
distance of the 

sampled address

• Each data location is accessed 
independently

• Statistically estimate reuse distance 
histogram from time distance

Time distance →
reuse distance
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Challenge

73

for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

PMU samples every 1K memory stores

26

debug registers
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Challenge

73

for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

PMU samples every 1K memory stores

27

debug registers

A[1K]

i=1K
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Challenge

73

for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

PMU samples every 1K memory stores

28

debug registers

i=2K
A[1K] A[2K]
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Challenge

73

for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

PMU samples every 1K memory stores
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debug registers

A[1K] A[2K]

A[3K]

i=3K
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Challenge

73

for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

PMU samples every 1K memory stores
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debug registers

A[1K] A[2K]

A[3K]

i=4K

A[4K]
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Challenge

73

for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

PMU samples every 1K memory stores
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debug registers

i=5K
A[1K] A[2K]

A[3K] A[4K]

A[5K]

?
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: replace the oldest one

73

PMU samples every 1K memory stores

32

debug registers

A[1K] A[2K]

A[3K] A[4K]

?

i=5K

A[5K]
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: replace the oldest one

73

PMU samples every 1K memory stores
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debug registers

A[1K] A[2K]

A[3K] A[4K]

i=5K

A[5K]
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: replace the oldest one

73

PMU samples every 1K memory stores

34

debug registers

A[1K] A[2K]

A[3K] A[4K]

A[5K] A[6K]
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: replace the oldest one

73

PMU samples every 1K memory stores

35

debug registers

A[1K] A[2K]

A[3K] A[4K]

A[5K] A[6K]

A[7K]
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: replace the oldest one

73

PMU samples every 1K memory stores

36

debug registers

A[1K] A[2K]

A[3K] A[4K]

A[5K] A[6K]

A[7K] A[8K]
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: replace the oldest one

73

PMU samples every 1K memory stores
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debug registers

A[1K] A[2K]

A[3K] A[4K]

A[5K] A[6K]

A[7K] A[8K]

A[9K]
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: replace the oldest one

73

PMU samples every 1K memory stores

38

debug registers

A[1K] A[2K]

A[3K] A[4K]

A[5K] A[6K]

A[7K] A[8K]

A[9K] A[10K]
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: replace the oldest one

73

PMU samples every 1K memory stores
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debug registers

A[1K] A[2K]

A[3K] A[4K]

A[5K] A[6K]

A[7K] A[8K]

A[9K] A[10K]

j=1K

Wait? We should have detected a reuse of 
A[1K] if it were not kicked out from debug 

registers.
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: replace the oldest one

73

PMU samples every 1K memory stores
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debug registers

A[1K] A[2K]

A[3K] A[4K]

A[5K] A[6K]

A[7K] A[8K]

A[9K] A[10K]

j=1K

Wait? We should have detected a reuse of 
A[1K] if it were not kicked out from debug 

registers.

We CANNOT detect any reuse of A
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: probabilistically get monitored

73

PMU samples every 1K memory stores

41

debug registers

A[1K] A[2K]

A[3K] A[4K]

1/2

i=5K

A[5K]
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: probabilistically get monitored

73

PMU samples every 1K memory stores

42

debug registers

A[1K] A[2K]

A[5K] A[4K]

i=5K
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: probabilistically get monitored

73

PMU samples every 1K memory stores

43

debug registers

A[1K] A[2K]

A[5K] A[4K]

1/3

i=6K

A[6K]
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: probabilistically get monitored

73

PMU samples every 1K memory stores

44

debug registers

A[1K] A[2K]

A[5K] A[4K]

1/3

i=6K

A[6K]

dropped
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: probabilistically get monitored

73

PMU samples every 1K memory stores

45

debug registers

A[1K] ???

??? ???

j=1K
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for (int i=1; i<=10K; i++){

A[i] = 0;

}

// All elements of A are   

// reused

for (int j=1; j<=10K; j++){

A[j] = 0;

}

Challenge

◦Handle a limited number of debug registers
◦ Strategy: probabilistically get monitored

73

PMU samples every 1K memory stores

46

debug registers

A[1K] ???

??? ???

j=1K

If there is a free register, use it.

Otherwise, probabilistically replace one of monitored addresses

Reservoir 

Sampling
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Evaluation on SPEC CPU2006

◦Overhead
◦ ~5%(time), ~5MB / thread (memory)

◦Accuracy
◦ Baseline: Intel PIN tool instruments every memory access

◦ How similar a measured (estimated) histogram is to the 
baseline?

47
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Evaluation on SPEC CPU2006

◦Similarity
◦ 𝑆 ∈ 0,1

◦ 𝑆 = 1, exactly the same

48

20%

40%

30%

10%

0%

10%

20%

30%
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A B C D

10%

60%

20%

10%

0%

10%

20%

30%

40%

50%

60%

70%

A B C D

𝑆 = 1 −
0.2 − 0.2 + 0.4 − 0.4 + 0.3 − 0.3 + 0.1 − 0.1

2

|0.2 − 0.1| + |0.4 − 0.6| + |0.3 − 0.2| + |0.1 − 0.1|
= 0.8
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Evaluation on SPEC CPU2006

◦Time distance histogram accuracy
◦ Median > 96%

◦Stack distance histogram accuracy
◦ Median > 90%

◦Inaccuracy reason
◦ Sparse reservoir sampling

◦ Model problem

◦ PMU imprecision

49
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Evaluation on SPEC CPU2006

Estimated Stack Reuse Histogram
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Evaluation on SPEC CPU2017

◦First to study data locality of SPEC CPU2017

◦Plot stack reuse histograms of all individual 
benchmarks

◦SPEC CPU2006 vs. 2017
◦ SPEC CPU2006 (4xx series)

◦ SPEC CPU2017 speed (6xx series)

51
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SPEC CPU2006 → 2017

◦Unchanged

93
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SPEC CPU2006 → 2017

◦Reuse distance has increased dramatically
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SPEC CPU2006 → 2017

◦Reuse distance has decreased
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Code Optimization

◦Strategy
◦ Pinpoint high-penalty cache misses

◦ Analyze with reuse distance

◦Speedup overview
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Programs
Improve
d locality

Optimization
Speed-

up

lulesh temporal fuse loops 1.54X

botsspar
spatial & 
temporal

interchange loop iterations within a nested loop 3.45X

backprop Spatial interchange loop iterations within a nested loop 1.52X

srad_v1 Spatial interchange loop iterations within a nested loop 1.80X

sweep3d spatial transpose arrays 1.04X
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Conclusions

◦RDX
◦ Lightweight, sampling-based

◦ Measures time & stack distance of the whole program 

◦ Guides optimization related to locality and cache 
performance

◦ Relies on hardware performance units and hardware debug 
registers

◦Characterization
◦ SPEC CPU2006

◦ SPEC CPU2017

◦Optimization
56


