CIM Research

HPCA '19, Washington DC

BRB

Mitigating Branch Predictor Side-Channels

Southampton

Ilias Vougioukas

Nikos Nikoleris, Andreas Sandberg, Stephan Diestelhorst Bashir M. Al-Hashimi, Geoff V. Merrett

19/2/2019

© 2019 Arm Limited

2018: The year of HW exploits

- Transient execution hardware side channel attacks.
- Uses speculative execution to leak information
- In 1 year 13 Spectre and 14 Meltdown attacks
- Effects still being assessed

How do we deal with such threats in the future consistently?

Contribution: BRB

- Flushing the BP between context switches
- Isolates contexts.... but very costly
- Proposal isolate per context : Branch Retention Buffer
- Keep minimal state, trim diminishing returns
- Recover some of the lost performance

Threat Model

Formalise the attack space with a threat model:

- Victim and attacker applications
- Both reside in the same core and share the same BP
- Victim can be slowed to detect behaviour of a branch.
- Attacker can force victim code to execute, targeting vulnerable code.
- Attacker can poison BP entries of the victim, forcing a misprediction.

Isolation can prevent the attack

Flush most BP state between switches... ...retain only useful parts per context

Security and Context Switching

Limit study

- **1.** Context switch happens more frequently than you think....
 - Measured on Pixel phone
 - We measured switches as fast as 1 every 64k instructions.
 - Online streaming services have reported similar numbers

That's roughly 1 every 12k branches!

2. Focus on Spectre type attacks

- Fixes not trivial
- Software
 - Very circumstantial
 - Not always possible
 - System stability issues
- Hardware
 - Shadow structures
 - Hard Partitioning
 - Flushing / Disabling / Tagging

But the performance drop can be as much as 30%

Flushing: Steady State vs Transient State

Southampton

Setup

- Use Championship Branch Prediction Framework 2016 (CBP)
 - Over 250 traces: long/short, mobile/server
- Modify CBP to flush the BP design per component on demand

D. A. Jimenez, "Multiperspective Perceptron Predictor," JWAC-4: Championship Branch Prediction, 2014.

Prediction

...

A. Seznec, "TAGE-SC-L branch predictors," JWAC-4: Championship Branch Prediction, 2014

TAGE vs Perceptron

Transient State Analysis

First look at transient analysis

- TAGE 64 and Perceptron 64 similar accuracy (3.6 MPKI)
- Same for 8kB versions (5 MPKI)
- Perceptron 8kB low accuracy when flushing frequently

TAGE vs Perceptron Transient Behavior

Storing (Partial) State

Branch Retention Buffer (BRB):

- Retains state per context
- Store minimal state
- Change active entry when context switching
- ASID points to active entry
- No overhead during predictions
- 2 entries for userspace, 1 for OS

Focus on TAGE

TAGE Accuracy Breakdown

Identifying the components that increase the accuracy the most

Break down how components contribute to accuracy.

- Retaining no state **doubles** the misprediction
- The TAGE tables are most of the accuracy.
- The statistical corrector is not useful for steady state or transient.
- Bimodal: best bang for buck prediction.

Storing the bimodal can help solve the transient accuracy drop.

Using BRB with TAGE

Preserving partial state per context can improve transient accuracy.

- Use a Branch Retention Buffer (BRB) to store minimal state.
- Can have multiple BRB entries for multiple contexts.
- Store only the bimodal base predictor.

Improving the Transient state

Retaining the bimodal in TAGE

- Bimodal retention improves transient accuracy
- Small benefits at the 12k branch mark
- Transient misprediction could improve

Need to get better accuracy from Bimodal

Transient MPKI with State Retention

Comparing the Bases

Perceptron vs bimodal

Interesting things in small sizes...

- Bimodal maximum accuracy 11MPKI
- Bimodal accuracy not affected by size

Baseline accuracy for TAGE (BRB)

- Perceptron has worse transient accuracy...
- But much better steady state predictions!

Retention only cares about steady state!

Small Perceptron vs Bimodal Comparison

ParTAGE

Swapping the Bimodal for a Perceptron

- New hybrid design, TAGE with Perceptron base
 - ParTAGE: Perceptron 8 tables, 1.25kB BRB entry size
 - ParTAGE 3kB: 3kB entry size, no statistical corrector

ParTAGE results

Comparing to empty TAGE again

- All version of ParTAGE are significantly better at transient state
- Notable improvements for 12k branch periods
- No effect at steady state

arm Research

Steady-State and Transient Behaviour

15 © 2019 Arm Limited

Southampton

A Closer Look

Break down how components contribute to accuracy.

- TAGE (BRB) improves accuracy by 15%.
- ParTAGE delivers 20% better accuracy.
- Base predictor steady state \propto Overall transient state.

ParTAGE steady-state on par with current designs.

Flushing Accuracy Compared to Steady State

Final Thoughts

New balance: Area v Performance v Security

- 1. Predictors often operate at a transient state.
- 2. Isolation improves security, but costly: solution BRB!
- 3. ParTAGE better transient prediction.

Motivation for the future to improve small predictors

arm Research Summit

Discovery through Diversity: Addressing tomorrow's challenges, together September 15-18 2019 | Austin, TX

Call for submissions open now!

Submit your presentation, poster, workshop or demo and share your research with colleagues from around the world

Deadline: 1 May 2019

arm.com/summit

Thank You Danke Merci ありが Gracias **Kiitos** 감사합니다 धन्यवाद شكر תודה

© 2019 Arm Limited