Amoeba: An Autonomous Backup and Recovery SSD for Ransomware Attack Defense

Donghyun Min1, Donggyu Park1, Jinwoo Ahn1, Ryan Walker2, Junghee Lee2, Sungyong Park1, Youngjae Kim1

Presenter: Donghyun Min
Feb 19, 2019 @ HPCA’19
Ransomware
Ransomware

Huge Financial Loss

Encryption
Damage of Ransomware Attack

- Many areas are suffering from damage
 - Public institutions
 - Government, industry

Consider the following example: Buffalo, NY, last July estimated

Ransomware-related damage cost will reach $20 billion by 2021!
How to Defend against Ransomware Attack

- Backup method

Original copy

Backup copy
How to Defend against Ransomware Attack

- Approach 1: Host-level backup
 - Backup on Local File system
 - Backup on Remote machine

- Approach 2: Device-level backup
 - FlashGuard [CCS’17]
 - SSD-Insider [ICDCS’18]
 - Amoeba [CAL’18]
Approach 1: Host-level Backup

- Backup inside File system
 - Extra storage space is required.
 - Ransomware with kernel privilege can disable backup process.

- Backup on Remote-machine
Approach 2: Device-level Backup

- FlashGuard [CCS’17]
- SSD-Insider [ICDCS’18]
Opportunities: Out-of-Place Update in an SSD

Flash Translation Layer (FTL)

Address Translation (LPN, PPN)

Physical Block

Physical Page

SSD

NAND Flash memory

VALID

VALID

VALID

VALID

VALID

VALID

VALID

VALID

VALID

(10, 2)

(20, 3)

...
Opportunities: Out-of-Place Update in an SSD

Encrypt File(A) by Ransomware

SSD

Address Translation (LPN, PPN)

Flash Translation Layer (FTL)

NAND Flash memory

In-place Update

VALID

VALID

VALID

VALID

VALID

VALID

VALID

VALID
Opportunities: Out-of-Place Update in an SSD

Encrypt File(A) by Ransomware

SSD

Address Translation (LPN, PPN)

Flash Translation Layer (FTL)

LPN 10

Out-of-place Update

VALID

(10, 4)

(20, 3)

INVALID

VALID

VALID

VALID

VALID

VALID

VALID
Opportunities: Out-of-Place Update in an SSD

Invalid page is actually an original page for recovery.

Encrypt File(A) by Ransomware

1. We can save storage space for backup because additional backup space is not required.
2. Device-level backup can become more secure because backup copy cannot be seen from ransomware application.
Challenges

Encrypt File(A) by Ransomware

Overwrites on File(B) by Normal User

Address Translation (LPN, PPN)

Flash Translation Layer (FTL)

NAND Flash memory

SSD

Backup

VALID
INVALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID

(10, 4)
(20, 3)

Out-of-place Update

Overwrites on File(B) by Normal User

Encrypt File(A) by Ransomware

Challenges
Challenges

Encrypt File(A) by Ransomware

Overwrites on File(B) by Normal User

SSD

Address Translation (LPN, PPN)

Flash Translation Layer (FTL)

NAND Flash memory

VALID

INVALID

VALID

VALID

VALID

VALID

VALID

VALID

VALID

VALID

Out-of-place Update

Backup

Backup
Challenges

Encrypt File(A) by Ransomware

Overwrites on File(B) by Normal User

SSD should keep invalid pages as backup only for updates by ransomware.
Summary: Limitations of Previous Works [CCS’17, ICDCS’18]

1. Lack of accurate ransomware detection algorithms
 - Detection solely relies on I/O access pattern (e.g., Write Intensity)
 ➔ False Positive (FP) ➔ GC overhead
 ➔ False Negative (FN) ➔ Recovery failure
Summary: Limitations of Previous Works [CCS’17, ICDCS’18]

1. Lack of accurate ransomware detection algorithms
 - Detection solely relies on I/O access pattern (e.g., Write Intensity)
 ➔ \textit{False Positive (FP)} ➔ GC overhead
 ➔ \textit{False Negative (FN)} ➔ Recovery failure

2. High unnecessary space overhead due to lack of intelligent backup mechanisms
 - Unnecessary backup pages increase GC overhead.

![Diagram showing user writes and ransomware writes affecting backup pages and GC overhead]
1. We use a content-based detection technique for high ransomware detection rate.

2. We implement an intelligent backup management mechanism to minimize space overhead for backup pages.
Challenge 1: How to Apply Content-based Detection at High Speed

- Content-based detection offers high ransomware detection rate, but, it is highly time-consuming because it requires huge computation power for old and new comparison for similarity and entropy computation.
Challenge 2: How Accurately Detect Ransomware Attack

- Ransomware detection algorithm needs to be developed by considering three indicators all together should be required for high detection rate.
Challenge 2: How Accurately Detect Ransomware Attack

- If only **Write Intensity** is used, it often misjudge normal requests and ransomware attacks.

- If only **Similarity** and **Entropy** are used, it cannot distinguish legitimate encryption applications using compression and PGP cryptographic library from ransomware attacks.
Challenge 3: How to Minimize Backup Space Overhead

We should be able to identify only necessary backup pages for recovery among backup pages.
Amoeba:
An Autonomous Backup and Recovery SSD for Ransomware Attack Defense
Amoeba System Architecture

Host machine

SSD

DRAM Buffer

SSD Controller

Flash Translation Layer (FTL)

DRAM Controller

Amoeba DMA

Flash Controller

NAND Flash
Amoeba System Architecture

- Amoeba DMA

```
Host machine

SSD

DRAM Buffer

SSD Controller

Flash Translation Layer (FTL)

DRAM Controller

Amoeba DMA

Flash Controller

NAND Flash
```
Amoeba System Architecture

- Ransomware Attack Risk Indicator (RARI)
Amoeba System Architecture

- Intelligent Backup Mechanism

[Diagram of Amoeba System Architecture]

- Host machine
- SSD
 - DRAM Buffer
 - SSD Controller
 - Flash Translation Layer (FTL)
 - DRAM Controller
 - Flash Controller
 - Amoeba DMA
 - NAND Flash

Intelligent Backup Mechanism
1. Amoeba DMA Engine

- Amoeba DMA engine for computing similarity, entropy
1. Amoeba DMA Engine

- Amoeba DMA engine for computing similarity, entropy
 - Basic DMA (Existing DMA)

![Diagram of SSD controller and data flow]

Write Request with New Data
1. Amoeba DMA Engine

- Amoeba DMA engine for computing **similarity, entropy**
 - Basic DMA (Existing DMA)
 - Amoeba DMA

![Diagram showing SSD, SSD Controller, and Amoeba DMA components]

- Write Request with **New Data**
1. Amoeba DMA Engine

- Amoeba DMA engine for computing similarity, entropy
 - Basic DMA (Existing DMA)
 - Amoeba DMA

Calculation delay can be hidden.
2. Ransomware Attack Risk Indicator (RARI)

- We establish a model that combines three indicators (write intensity, similarity, and entropy) to form a RARI value.
2. Ransomware Attack Risk Indicator (RARI)

- We establish a model that combines three indicators (write intensity, similarity, and entropy) to form a RARI value.
2. Ransomware Attack Risk Indicator (RARI)

- We establish a model that combines three indicators (write intensity, similarity, and entropy) to form a RARI value.
3. Intelligent Backup Control Mechanism

- We can accurately detect backup pages using RARI values. Thus, we can only maintain a backup page per logical page.

We can completely go away unnecessary backup pages in an SSD.
3. Intelligent Backup Control Mechanism

- Recovery Procedure

Recovery request

NAND Block

SSD

NAND Block

SSD

VALID

VALID

VALID

BACKUP

BACKUP

BACKUP

VALID

INVALID

INVALID

VALID

20
Evaluation Methodology

- MSR Disksim SSD Simulator
- Workload
 - Linux Erebus ransomware
 - User’s normal I/O
- Simulation setup
 - SSD Occupancy: 20%, 40%, 80%
 - Page Size: 8 KB, # of page per block: 128
- Comparison
 - Baseline: SSD without backup mechanism
 - FlashGuard
 - SSD-Insider
 - Amoeba
Result 1: Average Response Time

- **SSD page occupancy 20%**
- **SSD page occupancy 40%**
- **SSD page occupancy 80%**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSD page occupancy 20%</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>SSD page occupancy 40%</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>SSD page occupancy 80%</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Result 1: Average Response Time

- SSD page occupancy 20%
- SSD page occupancy 40%
- SSD page occupancy 80%
Result 1: Average Response Time

In worst case, response time of Amoeba only increased by 8% compared to baseline.
Result 2: Detection Accuracy

Amoeba has only less than 1% false detection.
Conclusion

- We presented Amoeba: An Autonomous Backup and Recovery SSD for Ransomware Attack Defense.
 - Implemented Amoeba DMA Hardware engine to compute content-based detection algorithm.
 - Proposed a Ransomware Attack Risk Indicator (RARI) metric.
 - Provided Intelligent Backup and Recovery mechanism.
Thank you
Q & A

Donghyun Min
mdh38112@sogang.ac.kr
Sogang University, South Korea
Backup slides 1: GC Calls

Number of GC Calls

SSD page occupancy 20% SSD page occupancy 40% SSD page occupancy 80%