Poise:
Balancing Thread-Level Parallelism and Memory System Performance in GPUs using Machine Learning

Saumay Dublish* Vijay Nagarajan‡ Nigel Topham‡

* Synopsys Inc.
‡ The University of Edinburgh

HPCA 2019
Washington D.C., USA
19th February, 2019
Overview

- GPUs are throughput-oriented systems
- Focus on overall system throughput
- Rely on high levels of multithreading
- Implemented by switching across warps
- Overlap latency with useful execution
Consequence of increasing TLP

- Increasing TLP not always useful
- Leads to cache thrashing
- Leads to bandwidth bottlenecks
- Results in high levels of congestion
- Latencies tend to be very high!

Can such high latencies be hidden?
Hiding Latencies in GPUs

Harnessing concurrency

Instruction concurrency
(Intra-warp concurrency)

Warp concurrency
(Inter-warp concurrency)
Hiding Latencies in GPUs

Harnessing concurrency

Instruction concurrency
(Intra-warp concurrency)

Warp concurrency
(Inter-warp concurrency)

Load latency
Execution

Load latency
Execution

GPU Architecture
Hiding Latencies in GPUs
Hiding Latencies in GPUs

Harnessing concurrency

Instruction concurrency
(Intra-warp concurrency)

Warp concurrency
(Inter-warp concurrency)

Works well in compute-intensive applications
The Case of Limited Parallelism

Fewer independent operations

Instruction concurrency
(Intra-warp concurrency)

Warp concurrency
(Inter-warp concurrency)

Load latency
Execution

Load latency
Execution

GPU Architecture

The Case of Limited Parallelism
The Case of Limited Parallelism

Fewer independent operations

Instruction concurrency
(Intra-warp concurrency)

Warp concurrency
(Inter-warp concurrency)
The Case of Limited Parallelism

Instruction concurrency
(Intra-warp concurrency)

Warp concurrency
(Inter-warp concurrency)

Fewer independent operations

Load latency
Execution

Higher load latency due to congestion

Impractically large number of warps required to completely hide latency

GPU Architecture

The Case of Limited Parallelism
Need For Balance

Tension between TLP and memory system performance

- Increase TLP to improve concurrency – latency worsens
- Reduce TLP to reduce latency – concurrency worsens
Tension between TLP and memory system performance

- Increase TLP to improve concurrency – latency worsens
- Reduce TLP to reduce latency – concurrency worsens
Need For Balance

Tension between TLP and memory system performance

- Increase TLP to improve concurrency – latency worsens
- Reduce TLP to reduce latency – concurrency worsens
Need For Balance

Tension between TLP and memory system performance

- Increase TLP to improve concurrency – latency worsens
- Reduce TLP to reduce latency – concurrency worsens

Optimal system throughput with balanced TLP and memory performance
Outline

• **Problem Statement** Balancing TLP and memory performance

• **Prior state-of-the-art** *CCWS and PCAL warp schedulers*

• **Pitfalls in prior techniques** *Iterative search and prone to local optima*

• **Goals** *Computing the best warp scheduling decisions*

• **Proposal** *Poise*

• **Results** *Experimental results*

• **Conclusion** *Key takeaways*
Prior state-of-the-art

Warps

L1 cache

Cache Thrashing
Memory Congestion
Prior state-of-the-art

Cache-conscious wavefront scheduling (CCWS)

Limits the degree of multithreading

Shortcomings
• Restricted coupling of warps with cache performance
• Underutilization of shared memory resources
• Dynamic policy has significant performance and cost overheads
• Static policy burdens the user with the task of profiling every workload

Prior state-of-the-art

L1 cache

Warps

Reduces cache thrashing
Relieves congestion
Prior state-of-the-art

Priority-based cache allocation (PCAL)

Alter parallelism independent of memory system performance

![Diagram](image-url)

Warps

- W1
- W2
- W3
- W4 (crossed out)

L1 cache

- W1
- W2
Prior state-of-the-art

Priority-based cache allocation (PCAL)

Vital warps (W1, W2, W3)

Cache-polluting warps (W1, W2)

CCWS search space

PCAL search space

Vital warps
Prior state-of-the-art

Priority-based cache allocation (PCAL)

Vital warps (N)
Determine degree of multithreading

Cache-polluting warps (p)
Subset of vital warps
Ability to allocate and evict the L1 cache
Reduce cache contention

Warp-tuple $\{ N, p \}$
Limitations of PCAL

- Heuristic-based iterative search are slow in hardware
- Prone to local optima in presence of multiple performance peaks
- These two limitations lead to sub-optimal solutions
Goals

How to find the best warp-tuple?

- Balance TLP and memory performance
- Avoid local optima
- Converge expeditiously
- Low sampling and hardware overhead
- Avoid burdening the user
Proposal

Poise

A technique to dynamically balance TLP and memory system performance

Machine Learning Framework
Supervised learning

Hardware Inference Engine
Runtime prediction

Poise: A System Overview
Analytical Model

• Analytical model uses domain knowledge to identify reliable features
• Allows us to reason about the effectiveness of different features
• Proposed feature vector consists of only seven features

More details about the analytical model in the paper
Machine Learning Framework

Regression Model

- We use Negative Binomial regression to perform supervised learning
- Inputs are mapped to the output using a log-linear link function
- Reasons for selecting Negative Binomial regression:
 - Predicts discrete non-negative warp-tuple values
 - Lightweight in training time and dataset
 - Low computational demand for training and inference
Hardware Inference Engine

- Computes **runtime** predictions about good warp-tuples for new workloads
- Constitutes a *prediction stage and local search*

Training Dataset
- Feature Set
 - Sample Input
 - Sample Output
 - Best warp-tuple

Regression Model

Prediction Stage & Local Search
- Unseen user application
- Runtime Input
- Poise prediction
- Best warp-tuple

Poise Hardware Inference Engine
Hardware Inference Engine

Prediction Stage

Perform predictions at runtime using new features and learned mapping

- Runtime Feature Collection: Performance Counters
- Dot product: Weights \cdot Features
- Inference: Log-linear link function

Unseen user application

$\text{Feature weights via compiler}$

Runtime Input

Predicted Output

Good warp-tuple
Local Search

Mitigate statistical errors in prediction with a near-neighborhood search via gradient ascent

Unseen user application

Runtime Input

Feature weights

via compiler

Prediction Stage

Predicted Output
Good warp-tuple

Local Search

Poise Prediction
Best warp-tuple

Warp Scheduler

Local search is less prone to getting trapped at local optima due to proximity to performance peaks
Working Summary

PCAL

- Cache-polluting warps
 - Iterative hill climbing
 - Local optimum

Poise

- Cache-polluting warps
- Feature collection
- Prediction
- Local Search

Vital warps
GTO warp scheduler

Warp Scheduler Queue

<table>
<thead>
<tr>
<th>Latest</th>
<th>W_{MAX-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>W_2</td>
</tr>
<tr>
<td></td>
<td>W_1</td>
</tr>
<tr>
<td>Oldest</td>
<td>W_0</td>
</tr>
</tbody>
</table>

Warp-ID bits
Warp Scheduler Architecture

Warp Scheduler Queue

<table>
<thead>
<tr>
<th>Warp-ID bits</th>
<th>Vital bit</th>
<th>Pollute bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_{\text{MAX}-1}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>W_2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>W_1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>W_0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Warp Scheduler Architecture

Compiler

Feature weights

Constant Memory

Hardware Inference Engine

Warp Scheduler Queue

Vital warps (N)

Cache-polluting warps (p)

Warp Scheduler Architecture
Warp Scheduler Architecture

Compiler

Feature weights

Constant Memory

Hardware Inference Engine

Warp Scheduler Queue

Warp-ID bits

Vital bit

Pollute bit

W_{MAX-1} 0 0

... 0 0

... 1 0

... 1 0

... 1 0

W_2 1 1

W_1 1 1

W_0 1 1

Latest

Oldest

Vital warps (N)

Cache-polluting warps (p)

Cache-polluting warps

Poise
Warp Scheduler Architecture

Compiler
- Constant Memory

Hardware Inference Engine
- Vital warps (N)
- Cache-polluting warps (p)

Warp Scheduler Queue

<table>
<thead>
<tr>
<th>Warp-ID bits</th>
<th>Vital bit</th>
<th>Pollute bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>W_1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>W_2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>\ldots</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>W_{MAX-1}</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Latest**
 - Do not participate in TLP
- **Oldest**
 - Do not pollute cache (bypass on read miss)
 - Allocate and replace cache lines

L1 Cache
- **Poise**
- Warp Scheduler Architecture
Evaluation

• **Platform**

 • Statsmodels – regression analysis
 • GPGPU-Sim (v3.2.2) – cycle-accurate simulator
 • GPUWattch (McPAT) – energy and area estimation

• **Benchmark Suites** *

 • Rodinia
 • MapReduce
 • Graph Suite
 • Polybench

Training and evaluation are done on disjoint set of benchmarks
Evaluation

• **Baseline GPU configuration**

 • 32 Streaming Multiprocessors (SM)

 • 16 KB Private L1 Cache

 • 2.25 MB Shared L2 Cache

 • GTO warp scheduler

 • 48 warps per SM
Evaluation

• **Warp Scheduling Schemes**

 • **GTO**
 • Baseline greedy-then-oldest warp scheduler
 • Maximum warps enabled per SM for multithreading

 • **SWL**
 • Static Warp Limiting from the CCWS scheduler
 • No runtime overheads in a static policy

 • **PCAL-SWL**
 • Dynamic PCAL policy with SWL for initial start

 • **Static-Best**
 • Each kernel run at best performing warp-tuple
 • Determined by offline profiling of each kernel
Results

Performance

Poise outperforms PCAL-SWL by 15.1% on average
Results

L1 Hit Rate

Poise reduces cache thrashing and reduces pressure on memory system
Results

Average Memory Latency

Poise increases the AML by only 1.1% over GTO
Results

Cache Bypassing & Stochastic Search

<table>
<thead>
<tr>
<th></th>
<th>GTO</th>
<th>APCM</th>
<th>Random-restart</th>
<th>Poise</th>
</tr>
</thead>
<tbody>
<tr>
<td>syr2k</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>syrk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gsmv</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mvt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bicg</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ss</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atax</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bfs</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kmeans</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-Mean</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPC (normalized to GTO)

- GTO: 24.2%
- APCM: 7.05%
- Random-restart: 7.05%
- Poise: 46.6%
Results

Poise reduces the energy consumption by 51.6% over GTO
Hardware Overhead

- **Arithmetic Units for link function computation**
 - Enough spare cycles in existing FP units
 - Time-multiplexing existing FP units on SM
 - *No extra hardware needed*

- **Feature collection**
 - Seven 32-bit hardware performance counters per SM

- **Finite State Machine**
 - Two 3-bit registers per SM

- **Modified Warp Scheduler**
 - 2-bits per entry in warp scheduler queue

Net storage overhead of **40.75 bytes** per SM
Discussion

• Why not larger models such as DNNs?
 • Bulky nature of complex models
 • Generate prohibitively large feature weight matrices with high storage needs
 • High computational demands for training and inference
 • Black box nature of complex models and feature sets
 • Lack of mathematical insights prevents reasoning
Discussion

• Poise – a machine learning based architecture technique

 • Harness domain knowledge to reduce model size and feature vector

 • Small, yet effective regression model

 • Inference has low computational and storage needs

 • Viable architectural mechanism

 • Demonstrate an effective use of ML to solve an architectural problem
Conclusion

• **Problem**
 • Conflict between TLP and memory system performance
 • Traditional techniques to balance are slow and sub-optimal
 • Goal is to find good warp-tuples expeditiously in hardware

• **Proposal**
 • *Poise* – a machine learning based architectural technique
 • Offline training to learn about good warp scheduling decisions
 • Use prior knowledge to make good runtime predictions

• **Results**
 • Harmonic mean speedup of 46.6% over baseline GTO scheduler
 • Extremely lightweight in terms of hardware overheads
 • Demonstrate an effective use of ML to solve an architectural problem
Poise: Balancing Thread-Level Parallelism and Memory System Performance in GPUs using Machine Learning

Questions?

Saumay Dublish
saumay.dublish@synopsys.com
http://homepages.inf.ed.ac.uk/s1433370/