
Poise:
Balancing Thread-Level Parallelism and Memory System 

Performance in GPUs using Machine Learning

HPCA 2019
Washington D.C., USA

19th February, 2019

Saumay Dublish* Vijay Nagarajan ‡ Nigel Topham‡

* Synopsys Inc.
‡ The University of Edinburgh



GPU Architecture

2

Overview

• GPUs are throughput-oriented systems

• Focus on overall system throughput

• Rely on high levels of multithreading

• Implemented by switching across warps

• Overlap latency with useful execution
DRAM

SM SM SM

L2

L1 L1 L1

OverviewGPU Architecture



GPU Architecture

3

Consequence of increasing TLP

• Increasing TLP not always useful

• Leads to cache thrashing

• Leads to bandwidth bottlenecks

• Results in high levels of congestion 

• Latencies tend to be very high!

Can such high latencies be hidden?
DRAM

SM SM SM

L2

L1 L1 L1

Consequence of increasing TLPGPU Architecture



4

Instruction concurrency

Warp concurrency

(Intra-warp	concurrency)

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

Harnessing concurrency

time

Hiding Latencies in GPUs

(Inter-warp	concurrency)

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

time

Load latency

Execution

Load latency

Execution

Hiding Latencies in GPUsGPU Architecture



5

Instruction concurrency

Warp concurrency

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

time

Hiding Latencies in GPUs

(Intra-warp	concurrency)

(Inter-warp	concurrency)

Harnessing concurrency

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

time

Load latency

Execution

Load latency

Execution

Hiding Latencies in GPUsGPU Architecture



6

Instruction concurrency

Warp concurrency

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

time

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

time

Hiding Latencies in GPUs

(Intra-warp	concurrency)

(Inter-warp	concurrency)

Harnessing concurrency

Works well in compute-intensive 
applications

Load latency

Execution

Load latency

Execution

Hiding Latencies in GPUsGPU Architecture



LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

7

Instruction concurrency

Warp concurrency

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

time

Fewer independent operations

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

time

(Intra-warp	concurrency)

(Inter-warp	concurrency)

The Case of Limited Parallelism

Load latency

Execution

Load latency

Execution

The Case of Limited ParallelismGPU Architecture



8

Instruction concurrency

Warp concurrency

time

time

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

(Intra-warp	concurrency)

(Inter-warp	concurrency)

Fewer independent operations

The Case of Limited Parallelism

Load latency

Execution

Load latency

Execution

The Case of Limited ParallelismGPU Architecture



9

Instruction concurrency

Warp concurrency

time

time

Load latency

Execution

Impractically large number of warps 
required to completely hide latency

Higher load latency 
due to congestionLOAD

Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

LOAD
Independent
Independent
Independent
Independent
DEPENDENCY

(Intra-warp	concurrency)

(Inter-warp	concurrency)

Fewer independent operations

The Case of Limited Parallelism

Load latency

Execution

The Case of Limited ParallelismGPU Architecture



Need For Balance

10

Memory PerformanceConcurrency

Tension between TLP and memory system performance

• Increase TLP to improve concurrency – latency worsens
• Reduce TLP to reduce latency – concurrency worsens



Need For Balance

11

Memory Performance

Concurrency

☓

✓

Tension between TLP and memory system performance

• Increase TLP to improve concurrency – latency worsens
• Reduce TLP to reduce latency – concurrency worsens



Need For Balance

12

Tension between TLP and memory system performance

• Increase TLP to improve concurrency – latency worsens
• Reduce TLP to reduce latency – concurrency worsens

Memory Performance

Concurrency

☓
✓



Memory PerformanceConcurrency
✓ ✓

Optimal system throughput with balanced TLP and memory performance

Need For Balance
Tension between TLP and memory system performance

• Increase TLP to improve concurrency – latency worsens
• Reduce TLP to reduce latency – concurrency worsens



Outline

14

• Problem Statement Balancing TLP and memory performance

• Prior state-of-the-art CCWS and PCAL warp schedulers

• Pitfalls in prior techniques Iterative search and prone to local optima

• Goals Computing the best warp scheduling decisions

• Proposal Poise

• Results Experimental results

• Conclusion Key takeaways



Prior state-of-the-art

15

L1 cache

Warps
Cache Thrashing

Memory Congestion

CCWSPrior state-of-the-art



Prior state-of-the-art

16

L1 cache

Warps
Reduces cache thrashing

Relieves congestion

☓

Cache-conscious wavefront scheduling (CCWS)

Shortcomings
• Restricted coupling of warps with cache performance
• Underutilization of shared memory resources
• Dynamic policy has significant performance and cost overheads 
• Static policy burdens the user with the task of profiling every workload

CCWSPrior state-of-the-art

Limits the degree of multithreading



☓

Prior state-of-the-art

17

L1 cache

Warps

CCWSPrior state-of-the-art

Priority-based cache allocation (PCAL)
Alter parallelism independent of memory system performance



Prior state-of-the-art

18

L1 cache

Warps ☓

Priority-based cache allocation (PCAL)

Vital warps (W1, W2, W3)

Cache-polluting warps 
(W1, W2)

C
ac

he
-p

ol
lu

tin
g 

w
ar

ps

Vital warps

PCALPrior state-of-the-art



Prior state-of-the-art

19

Priority-based cache allocation (PCAL)

Vital warps (N)
Determine degree of multithreading

Cache-polluting warps (p)
Subset of vital warps
Ability to allocate and evict the L1 cache
Reduce cache contention

Warp-tuple { N, p }
C

ac
he

-p
ol

lu
tin

g 
w

ar
ps

Vital warps

PCALPrior state-of-the-art



Limitations of PCAL

20

• Heuristic-based iterative 
search are slow in hardware

• Prone to local optima in 
presence of multiple 
performance peaks

• These two limitations lead to 
sub-optimal solutions

C
ac

he
-p

ol
lu

tin
g 

w
ar

ps

Vital warps

Local optimum

Limitations of PCALPrior state-of-the-art



21

C
ac

he
-p

ol
lu

tin
g 

w
ar

ps

Vital warps

• Balance TLP and memory performance

• Avoid local optima

• Converge expeditiously

• Low sampling and hardware overhead

• Avoid burdening the user

Goals

Best warp-tuple?

How to find the best warp-tuple?

Goals



22

A technique to dynamically balance TLP and memory system performance 

Proposal
Poise

Machine Learning Framework Hardware Inference Engine

Training 
Dataset

Feature Set
Sample Input

Sample Output
Best warp-tuple

Regression 
Model

Supervised learning

Feature weights Prediction 
Stage &

Local Search

Runtime prediction

Runtime Input

Unseen user application

Poise Prediction
Best warp-tuple

via compiler

Pr
of

ile
d 

K
er

ne
ls

Poise: A System OverviewPoise



23

• Analytical model uses domain knowledge to identify reliable features

• Allows us to reason about the effectiveness of different features

• Proposed feature vector consists of only seven features

More details about the analytical model in the paper

Machine Learning Framework

Analytical Model

Analytical ModelMachine Learning FrameworkPoise



24

• We use Negative Binomial regression to perform supervised learning

• Inputs are mapped to the output using a log-linear link function

• Reasons for selecting Negative Binomial regression:

• Predicts discrete non-negative warp-tuple values

• Lightweight in training time and dataset

• Low computational demand for training and inference

Machine Learning Framework

Regression Model

Regression ModelMachine Learning FrameworkPoise



25

• Computes runtime predictions about good warp-tuples for new workloads

• Constitutes a prediction stage and local search

Hardware Inference Engine

Training 
Dataset

Feature Set
Sample Input

Sample Output
Best warp-tuple

Regression 
Model

Feature weights Prediction 
Stage & 

Local Search

Runtime Input

Unseen user application

Poise prediction
Best warp-tuple

via compiler

Hardware Inference EnginePoise



26

Hardware Inference Engine

Prediction Stage
Perform predictions at runtime using new features and learned mapping

Feature weights
Prediction 

Stage

Runtime Input

Unseen user application

Predicted Output
Good warp-tuple

via compiler

Dot product
Weights ● Features

Inference
Log-linear link function

Runtime Feature Collection
Performance Counters

Prediction StageHardware Inference EnginePoise



27

Hardware Inference Engine

Local Search
Mitigate statistical errors in prediction with a near-neighborhood search 

via gradient ascent 

Feature weights
Prediction 

Stage

Runtime Input

Unseen user application

Predicted Output
Good warp-tuple

via compiler
Local Search

Poise Prediction
Best warp-tuple

Warp 
Scheduler

Local search is less prone to getting trapped at local optima due to proximity to 
performance peaks

Local SearchHardware Inference EnginePoise



28

Working Summary
C

ac
he

-p
ol

lu
tin

g 
w

ar
ps

Vital warps

C
ac

he
-p

ol
lu

tin
g 

w
ar

ps

Vital warps

PoisePCAL

Local optimum
Prediction

Local Search

Working SummaryPoise



29

Warp Scheduler Architecture

WMAX-1

…
…
…
…
W2

W1

W0

Warp Scheduler Queue

Warp-ID
bits

GTO warp scheduler

Warp Scheduler ArchitecturePoise



30

Warp Scheduler Architecture

WMAX-1

…
…
…
…
W2

W1

W0

Warp Scheduler Queue

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

Warp-ID
bits

Vital
bit

Pollute
bit

Warp Scheduler ArchitecturePoise



31

Warp Scheduler Architecture

WMAX-1

…
…
…
…
W2

W1

W0

Warp Scheduler Queue

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

Warp-ID
bits

Vital
bit

Pollute
bit

WMAX-1

…
…
…
…
W2

W1

W0

0
0
1
1
1
1
1
1

N
Vital Warps

Constant 
Memory

Hardware 
Inference 
Engine

Compiler

Vital warps (N)
Cache-polluting warps (p)

Feature weights

Warp Scheduler ArchitecturePoise



32

Warp Scheduler Architecture

Constant 
Memory

Hardware 
Inference 
Engine

Compiler

Vital warps (N)
Cache-polluting warps (p)

WMAX-1

…
…
…
…
W2

W1

W0

Warp Scheduler Queue

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

Warp-ID
bits

Vital
bit

Pollute
bit

WMAX-1

…
…
…
…
W2

W1

W0

0
0
1
1
1
1
1
1

p
Cache-polluting 

warps

0
0
0
0
0
1
1
1

Feature weights

Warp Scheduler ArchitecturePoise



33

Warp Scheduler Architecture

Constant 
Memory

Hardware 
Inference 
Engine

Compiler

Vital warps (N)
Cache-polluting warps (p)

WMAX-1

…
…
…
…
W2

W1

W0

Warp Scheduler Queue

0
0
1
1
1
1
1
1

0
0
0
0
0
1
1
1

Warp-ID
bits

Vital
bit

Pollute
bit

L1 C
ache

Feature weights

Warp Scheduler ArchitecturePoise

} LOAD [a]

(bypass on read miss)
Do not pollute cache

} LOAD [b]
Allocate and replace 

cache lines

}Do not participate in 
TLP



Evaluation

34

• Platform

• Statsmodels – regression analysis 
• GPGPU-Sim (v3.2.2) – cycle-accurate simulator
• GPUWattch (McPAT) – energy and area estimation

• Benchmark Suites *

• Rodinia
• MapReduce
• Graph Suite
• Polybench

*Training and evaluation are done on disjoint set of benchmarks

MethodologyEvaluation



Evaluation

35

• Baseline GPU configuration

• 32 Streaming Multiprocessors (SM)

• 16 KB Private L1 Cache

• 2.25 MB Shared L2 Cache

• GTO warp scheduler 

• 48 warps per SM

MethodologyEvaluation



Evaluation

36

• Warp Scheduling Schemes

• GTO
• Baseline greedy-then-oldest warp scheduler 
• Maximum warps enabled per SM for multithreading

• SWL
• Static Warp Limiting from the CCWS scheduler
• No runtime overheads in a static policy 

• PCAL-SWL
• Dynamic PCAL policy with SWL for initial start

• Static-Best
• Each kernel run at best performing warp-tuple
• Determined by offline profiling of each kernel

MethodologyEvaluation



Results

37

Performance

21.8%

31.5% 46.6%
52.8%

Poise outperforms PCAL-SWL by 15.1% on average

ResultsEvaluation



Results

38

L1 Hit Rate

20.6%

37.7% 27.1%
40.1%

Poise reduces cache thrashing and reduces pressure on memory system

ResultsEvaluation



Results

39

Average Memory Latency

-10.7%
32.4% 1.1%

14.1%

Poise increases the AML by only 1.1% over GTO



40

Results
Cache Bypassing & Stochastic Search

7.05%

24.2%

46.6%



41

Results

Energy consumption
51.6%79%

Poise reduces the energy consumption by 51.6% over GTO

ResultsEvaluation



Hardware Overhead

42

• Arithmetic Units for link function computation
• Enough spare cycles in existing FP units
• Time-multiplexing existing FP units on SM
• No extra hardware needed

• Feature collection
• Seven 32-bit hardware performance counters per SM

• Finite State Machine
• Two 3-bit registers per SM

• Modified Warp Scheduler 
• 2-bits per entry in warp scheduler queue 

Net storage overhead of 40.75 bytes per SM 

Hardware OverheadEvaluation



Discussion

43

• Why not larger models such as DNNs?

• Bulky nature of complex models

• Generate prohibitively large feature weight matrices with high 
storage needs

• High computational demands for training and inference

• Black box nature of complex models and feature sets

• Lack of mathematical insights prevents reasoning

Discussion



Discussion

44

• Poise – a machine learning based architecture technique

• Harness domain knowledge to reduce model size and feature vector

• Small, yet effective regression model

• Inference has low computational and storage needs

• Viable architectural mechanism

• Demonstrate an effective use of ML to solve an architectural problem

Discussion



Conclusion

45

• Problem
• Conflict between TLP and memory system performance
• Traditional techniques to balance are slow and sub-optimal
• Goal is to find good warp-tuples expeditiously in hardware

• Proposal
• Poise – a machine learning based architectural technique
• Offline training to learn about good warp scheduling decisions
• Use prior knowledge to make good runtime predictions

• Results
• Harmonic mean speedup of 46.6% over baseline GTO scheduler
• Extremely lightweight in terms of hardware overheads
• Demonstrate an effective use of ML to solve an architectural problem

Conclusion



46

Questions?
Saumay Dublish

saumay.dublish@synopsys.com
http://homepages.inf.ed.ac.uk/s1433370/

Poise:
Balancing Thread-Level Parallelism and Memory System 

Performance in GPUs using Machine Learning


