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Overview

• GPUs are throughput-oriented systems

• Focus on overall system throughput

• Rely on high levels of multithreading

• Implemented by switching across warps

• Overlap latency with useful execution
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Consequence of increasing TLP

• Increasing TLP not always useful

• Leads to cache thrashing

• Leads to bandwidth bottlenecks

• Results in high levels of congestion 

• Latencies tend to be very high!

Can such high latencies be hidden?
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Instruction concurrency

Warp concurrency
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Memory PerformanceConcurrency

Tension between TLP and memory system performance

• Increase TLP to improve concurrency – latency worsens
• Reduce TLP to reduce latency – concurrency worsens
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Memory Performance

Concurrency
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Tension between TLP and memory system performance

• Increase TLP to improve concurrency – latency worsens
• Reduce TLP to reduce latency – concurrency worsens

Memory Performance

Concurrency

☓
✓



Memory PerformanceConcurrency
✓ ✓

Optimal system throughput with balanced TLP and memory performance

Need For Balance
Tension between TLP and memory system performance

• Increase TLP to improve concurrency – latency worsens
• Reduce TLP to reduce latency – concurrency worsens
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• Problem Statement Balancing TLP and memory performance

• Prior state-of-the-art CCWS and PCAL warp schedulers

• Pitfalls in prior techniques Iterative search and prone to local optima

• Goals Computing the best warp scheduling decisions

• Proposal Poise

• Results Experimental results

• Conclusion Key takeaways
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L1 cache

Warps
Cache Thrashing

Memory Congestion

CCWSPrior state-of-the-art
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L1 cache

Warps
Reduces cache thrashing

Relieves congestion

☓

Cache-conscious wavefront scheduling (CCWS)

Shortcomings
• Restricted coupling of warps with cache performance
• Underutilization of shared memory resources
• Dynamic policy has significant performance and cost overheads 
• Static policy burdens the user with the task of profiling every workload

CCWSPrior state-of-the-art

Limits the degree of multithreading
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Prior state-of-the-art
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L1 cache

Warps

CCWSPrior state-of-the-art

Priority-based cache allocation (PCAL)
Alter parallelism independent of memory system performance
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L1 cache

Warps ☓

Priority-based cache allocation (PCAL)

Vital warps (W1, W2, W3)

Cache-polluting warps 
(W1, W2)
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Priority-based cache allocation (PCAL)

Vital warps (N)
Determine degree of multithreading

Cache-polluting warps (p)
Subset of vital warps
Ability to allocate and evict the L1 cache
Reduce cache contention

Warp-tuple { N, p }
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• Heuristic-based iterative 
search are slow in hardware

• Prone to local optima in 
presence of multiple 
performance peaks

• These two limitations lead to 
sub-optimal solutions
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Vital warps

• Balance TLP and memory performance

• Avoid local optima

• Converge expeditiously

• Low sampling and hardware overhead

• Avoid burdening the user

Goals

Best warp-tuple?

How to find the best warp-tuple?

Goals
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A technique to dynamically balance TLP and memory system performance 

Proposal
Poise

Machine Learning Framework Hardware Inference Engine

Training 
Dataset

Feature Set
Sample Input

Sample Output
Best warp-tuple

Regression 
Model

Supervised learning

Feature weights Prediction 
Stage &

Local Search

Runtime prediction

Runtime Input

Unseen user application

Poise Prediction
Best warp-tuple

via compiler
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Poise: A System OverviewPoise
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• Analytical model uses domain knowledge to identify reliable features

• Allows us to reason about the effectiveness of different features

• Proposed feature vector consists of only seven features

More details about the analytical model in the paper

Machine Learning Framework

Analytical Model

Analytical ModelMachine Learning FrameworkPoise
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• We use Negative Binomial regression to perform supervised learning

• Inputs are mapped to the output using a log-linear link function

• Reasons for selecting Negative Binomial regression:

• Predicts discrete non-negative warp-tuple values

• Lightweight in training time and dataset

• Low computational demand for training and inference

Machine Learning Framework

Regression Model

Regression ModelMachine Learning FrameworkPoise
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• Computes runtime predictions about good warp-tuples for new workloads

• Constitutes a prediction stage and local search

Hardware Inference Engine

Training 
Dataset

Feature Set
Sample Input

Sample Output
Best warp-tuple

Regression 
Model

Feature weights Prediction 
Stage & 

Local Search

Runtime Input

Unseen user application

Poise prediction
Best warp-tuple

via compiler

Hardware Inference EnginePoise
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Hardware Inference Engine

Prediction Stage
Perform predictions at runtime using new features and learned mapping

Feature weights
Prediction 

Stage

Runtime Input

Unseen user application

Predicted Output
Good warp-tuple

via compiler

Dot product
Weights ● Features

Inference
Log-linear link function

Runtime Feature Collection
Performance Counters

Prediction StageHardware Inference EnginePoise
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Hardware Inference Engine

Local Search
Mitigate statistical errors in prediction with a near-neighborhood search 

via gradient ascent 

Feature weights
Prediction 

Stage

Runtime Input

Unseen user application

Predicted Output
Good warp-tuple

via compiler
Local Search

Poise Prediction
Best warp-tuple

Warp 
Scheduler

Local search is less prone to getting trapped at local optima due to proximity to 
performance peaks

Local SearchHardware Inference EnginePoise
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Working Summary
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Warp Scheduler Architecture
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Warp Scheduler ArchitecturePoise
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Warp Scheduler Architecture
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Warp Scheduler Architecture
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Warp Scheduler Architecture
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Warp Scheduler Architecture
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• Platform

• Statsmodels – regression analysis 
• GPGPU-Sim (v3.2.2) – cycle-accurate simulator
• GPUWattch (McPAT) – energy and area estimation

• Benchmark Suites *

• Rodinia
• MapReduce
• Graph Suite
• Polybench

*Training and evaluation are done on disjoint set of benchmarks

MethodologyEvaluation
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• Baseline GPU configuration

• 32 Streaming Multiprocessors (SM)

• 16 KB Private L1 Cache

• 2.25 MB Shared L2 Cache

• GTO warp scheduler 

• 48 warps per SM

MethodologyEvaluation
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• Warp Scheduling Schemes

• GTO
• Baseline greedy-then-oldest warp scheduler 
• Maximum warps enabled per SM for multithreading

• SWL
• Static Warp Limiting from the CCWS scheduler
• No runtime overheads in a static policy 

• PCAL-SWL
• Dynamic PCAL policy with SWL for initial start

• Static-Best
• Each kernel run at best performing warp-tuple
• Determined by offline profiling of each kernel

MethodologyEvaluation
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Performance

21.8%

31.5% 46.6%
52.8%

Poise outperforms PCAL-SWL by 15.1% on average

ResultsEvaluation
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L1 Hit Rate

20.6%

37.7% 27.1%
40.1%

Poise reduces cache thrashing and reduces pressure on memory system

ResultsEvaluation



Results

39

Average Memory Latency

-10.7%
32.4% 1.1%

14.1%

Poise increases the AML by only 1.1% over GTO
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Results
Cache Bypassing & Stochastic Search

7.05%

24.2%

46.6%
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Results

Energy consumption
51.6%79%

Poise reduces the energy consumption by 51.6% over GTO

ResultsEvaluation
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• Arithmetic Units for link function computation
• Enough spare cycles in existing FP units
• Time-multiplexing existing FP units on SM
• No extra hardware needed

• Feature collection
• Seven 32-bit hardware performance counters per SM

• Finite State Machine
• Two 3-bit registers per SM

• Modified Warp Scheduler 
• 2-bits per entry in warp scheduler queue 

Net storage overhead of 40.75 bytes per SM 

Hardware OverheadEvaluation
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• Why not larger models such as DNNs?

• Bulky nature of complex models

• Generate prohibitively large feature weight matrices with high 
storage needs

• High computational demands for training and inference

• Black box nature of complex models and feature sets

• Lack of mathematical insights prevents reasoning

Discussion
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• Poise – a machine learning based architecture technique

• Harness domain knowledge to reduce model size and feature vector

• Small, yet effective regression model

• Inference has low computational and storage needs

• Viable architectural mechanism

• Demonstrate an effective use of ML to solve an architectural problem

Discussion
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• Problem
• Conflict between TLP and memory system performance
• Traditional techniques to balance are slow and sub-optimal
• Goal is to find good warp-tuples expeditiously in hardware

• Proposal
• Poise – a machine learning based architectural technique
• Offline training to learn about good warp scheduling decisions
• Use prior knowledge to make good runtime predictions

• Results
• Harmonic mean speedup of 46.6% over baseline GTO scheduler
• Extremely lightweight in terms of hardware overheads
• Demonstrate an effective use of ML to solve an architectural problem

Conclusion
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Questions?
Saumay Dublish

saumay.dublish@synopsys.com
http://homepages.inf.ed.ac.uk/s1433370/

Poise:
Balancing Thread-Level Parallelism and Memory System 

Performance in GPUs using Machine Learning


