Understanding the Future of Energy Efficiency in Multi-Module GPUs

<u>Akhil Arunkumar</u>*, Evgeny Bolotin[#], David Nellans[#], Carole-Jean Wu* *Arizona State University, [#]NVIDIA

Multi-Module GPUs

On-package Integration

Utilize organic package / interposer

- Arunkumar et al., ISCA '17
- Vijayaraghavan et al., HPCA '17

On-board Integration

Utilize PC board

- Milic et al., ISCA '17
- NVIDIA DGX, HGX

Hybrid Integration

Utilize package and PC board

• Dally et al., VLSI '18

Prior works have focused only on the performance aspect.

Energy Cost of Multi-Module Scaling

- Energy cost per task could double!
 - 32 GPMs integrated on-board consumes 2x the energy of 1 GPM ☺
- What are the energy efficiency limitations?

• Where are the bottlenecks?

Outline

- Introduction and background
- GPU energy estimation framework GPUJoule
- Energy efficiency scaling metric EDPSE
- Energy efficiency trends in future multi-module GPUs
- Conclusion

GPU Energy Estimation – Prior Work

- Bottom-up GPU energy estimation^{[1][2][3]}:
 - Estimate energy cost of each microarchitectural component
 - Hard to keep current as GPUs evolve
- Top-down instruction-based energy estimation^{[4][5][6]}:
 - Estimate energy cost of instruction operations executed
 - Flexible and agile as microarchitecture evolves

Top-down energy model is well suited for GPUs

- [1] Hong and Kim, "An integrated GPU power and performance model", ISCA '10[2] Leng et al., "GPUWattch: Enabling energy optimizations in GPGPUs", ISCA '13
- [3] Guerreiro et al., "GPGPU power modeling for multi-domain voltage-frequency scaling", HPCA '18
- [4] Kestor et al., "Quantifying the energy cost of data movement in scientific applications", IISWC '13
 [5] Pandiyan et al., "Quantifying the energy cost of data movement for Emerging Smartphone Workloads on Mobile Platforms", IISWC '13
- [6] Shao et al., "Energy characterization and instruction-level energy model of Intel's Xeon Phi⁴ Processor", ISLPED '13

Our Contribution: The GPUJoule Framework

- Key Idea:
 - Estimate the energy-per-instruction (EPI) for each compute instruction type
 - Estimate the energy-per-transaction (EPT) for each memory transaction type
 - GPU-Energy (per-application):

GPUJoule Energy Modeling Methodology

GPUJoule Validation

- GPU platform
 - Nvidia Tesla K40 GPU
 - 15 SMs, 16 48 KB L1 cache,
 - 1.5 MB L2 cache, 12 GB, 280 GB/s GDDR5 Memory
 - On-board power sensors for power measurement
- Workloads
 - Validation microbenchmarks
 → compute instruction + data movement operations
 - Real GPU applications from Rodinia, CORAL & Stream suites

Tesla K40 Energy Characteristics

Inst or Op	EPI (nJ)	EPT (pJ/bit)
DADD, FFMA	0.15, 0.05	-
IADD, IMAD	0.07, 0.15	-
LOG2, SINE	0.03, 0.10	-
Shd Mem -> Reg, L1 -> Reg	-	5.32, 5.85
L2 -> L1	-	15.48
DRAM -> L2	-	30.55

- EPI influenced by bit width, and functional unit
- EPT influenced by the level of memory hierarchy
 - DRAM -> Register costs 9x more than L1 -> Register
 - DRAM -> Register costs 80x more than floating point compute

GPUJoule Accuracy

Outline

- Introduction and background
- GPU energy estimation framework GPUJoule
- Energy efficiency scaling metric EDPSE
- Energy efficiency trends in future multi-module GPUs
- Conclusion

Quantifying Energy Efficiency: EDP Scaling Efficiency

- EDP and ED² well suited for comparing systems with similar resources
- For strong scaled systems: Energy-Delay-Product Scaling Efficiency (EDPSE)

$$EDPSE = \frac{EDP_1}{N} \times \frac{1}{EDP_N}$$

- Evaluates performance, energy costs, and resource scaling together
- Systems can be expected to achieve an EDPSE threshold in the future
 - 50% EDPSE → "Energy efficiency scales to <u>50% of the ideal</u> with strong scaling"

Outline

- Introduction and background
- GPU energy estimation framework GPUJoule
- Energy efficiency scaling metric EDPSE
- Energy efficiency trends in future multi-module GPUs
- Conclusion

Methodology

- Performance Simulations:
 - Model GPUs with 1 32 GPU modules
 - Distributed CTA scheduling, first touch page placement, ring interconnect

BW Config Name	I/O BW	DRAM BW	I/O to DRAM BW Ratio	Integration Domain
1x-BW	128 GB/s	256 GB/s	1:2	On-Board
2x-BW	256 GB/s	256 GB/s	1:1	On-Package
4x-BW	512 GB/s	256 GB/s	2:1	On-Package

- Energy Modeling:
 - EPI and EPT values from GPUJoule
 - Augmented with HBM Memory &

Inter-GPM data movement energy costs

[1] O'Connor et al., "Fine-Grained DRAM: Energy-Efficient DRAM for Extreme Bandwidth Systems", MICRO 2017

[2] Poulton et al., "A 0.54 pJ/b 20 Gb/s Ground-Referenced Single-Ended Short-Reach Serial Link in 28 nm CMOS for Advanced Packaging Applications", JSSC 2013

[3] Dally, W., "Challenges for Future Computing Systems", Keynote, HiPEAC 2015

	Energy Cost
HBM DRAM -> L2 Cache ^[1]	21.1 pJ/bit
On-Package Inter-GPM ^[2]	0.54 pJ/bit
On-Board Inter-GPM ^[3]	10 pJ/bit

EDP Scaling Efficiency of Future GPUs

- EDPSE reduces drastically with increase in GPMs
- Multi-Module GPUs face energy efficiency limitations at scale

Diminishing Trend in Energy Efficiency Scaling

- Speedup reduces as number of modules increase
- Energy cost increases as number of modules increase

NUMA-effects lead to performance loss and energy increase

On-package integration and constant energy amortization

- Multi-module GPUs suffer from high constant energy overheads
 - VRMs, power delivery network, system I/O etc.
- On-package integration allows amortization of these overheads

Higher link BW and tighter integration yields better energy efficiency scaling

Speedup & Energy Consumption

- Speedup is dependent on bandwidth
- Energy consumption drops with speedup
- Only increasing GPMs might not help
 - 16-GPM with 2xBW has same performance as 32-GPM with 1xBW
 - Consumes only half the energy!
- Path to an efficient 32-GPM GPU
 - Increase bandwidth to 4x-BW.
 - Utilize on-package integration
 - Reduce energy consumption by 45%

Conclusions

- Developed GPUJoule Instruction level GPU energy estimation framework
 - Achieves 90% accuracy compared to real silicon energy measurements
 - Open sourced at github.com/akhilarunkumar/GPUJoule_release
- Identify key energy efficiency trends in future GPUs
 - Energy efficiency scaling reduces as number of modules increase
 - NUMA effects lead to suboptimal performance and energy consumption
 - Inter-module bandwidth and tighter integration of components (on package integration) lead to higher energy efficiency

Understanding the Future of Energy Efficiency in Multi-Module GPUs

Thank you

<u>Akhil Arunkumar</u>*, Evgeny Bolotin[#], David Nellans[#], Carole-Jean Wu^{*} *Arizona State University, [#]NVIDIA

Impact of On-Board Switch

