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DATA SLACK

BACKGROUND & CLASSIFICATION
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l Data |
1
l Operation | l Data-Width | l Data-Type \

VADD.I16 Q0, Q1, Q2]

vewats  |@Ntifying data slack at decoder:

el instruction [/ prediction / lookup table

127 112|111 9695 i 80 79 i 64 63 i 48 47 i 32 31 i 16 15 i 0

[1] ARM Ltd., 2009
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EXECUTE STAGE

TRANSPARENT DATAFLOW
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Transparence on a Dataflow Graph

@{ Q Trad#pemehDBathdiow:

» Load Synchronous
> Exec Iyargparents
» Store Synchronous

h Transparence boundary
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Transparent Dataflow with Synchronous Control
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INSTRUCTION SCHEDULER

SLACK INCORPORATED SCHEDULING
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Slack-efficient Scheduler: Motivation

Cycle 1

|1 Issue
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Cycle 2

|1 Execute

|13 Issue

Cycle 3
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Cycle 5
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Slack-aware Scheduler: Proposal

@ Slack Accumulation
» Tracking and accumulating slack over dataflow graphs

@ Eager Grandparent Wakeup
> Speculative child wakeup via grand parent tags!Stark, 2000]

@ Skewed Selection logic
» Non-speculative parent preferred over speculative child




Scheduling Microarchitecture (illustrative)
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Scheduling Microarchitecture (Operational)

Details Operational design with single

in

et predicted parent / grandparent!
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EVALUATION

METHODOLOGY AND RESULTS
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Experimental Setup

* Methodology:
» Perf & Power: Gemb5 + McPAT
> Slack analysis: Synthesis on Synopsys Design Compiler
» Freq & Tech: 2 GHz, 45nm

« Baseline:
» 3 sizes of OOQ cores
= Front-end: 3/4/8
= Execution: 3/4/6
= 64K L1 IC/DC, 2M L2

« Benchmarks:

» Compute intensive benchmarks from SPEC CPU2006 /
MiBench / ARM Compute Library (ARM ISA)
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Benchmark Operation Distribution
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Speedup over different cores

Speedup over baseline (%)
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Comparison with other proposals
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» Timing Speculation

» Increase frequency at fixed
voltage, with timing errors

» Error detection, coarse tuning
granularity, potential error
every operation

» QOperation Fusion

» Pairs of operations in single
(standard) clock cycle

» Low opportunity, costly
compiler or h/w optimization
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REDSOC Conclusions

* | hope | convinced you that
» Data Slack is considerable
» Transparent dataflow designs are attractive
» OO0 modifiable with reasonable overheads

« Advantages Future work:
» No timing errors or detection > Slack between FUs
> Instruction granularity control » Approximate
> Traditional cores/apps/compilers > Other parts of core

» Other processing designs

* Results
» 510 25% performance improvement
» 2X 10 6x more efficient than prior proposals
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Backup slides
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Prior Proposals £ 'ﬁ

Prior Work Description Limitations

Elastic Pipelines Asynchronous Blocks w/ Completion detection /
[Nowick, 2011] handshake mechanisms handshake overheads. High sync.
integration costs

Specialized Data- Single ‘slow’ cycle executing Poor flexibility, low throughput or

paths chained combinational ops. replication overheads
[Sampson, 2011]

Operation Fusion Sequence of operations in Low opportunity, costly compiler
[Park, 2009] single (standard) clock cycle  or h/w optimization

Synchronous Increase/decrease frequency/  Error detection/recovery, high
Timing Speculation  voltage, with timing errors tuning overhead, potential error

Need for aggressive solutions w/ low (or no) risk,

suited to general purpose compute!!
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Processor Configurations

Parameter

Frequency 2 GHz 2 GHz 2 GHz
Front-End Width 3 4 8
ROB Size 40 80 160
LSQ Size 16 32 64
RSEs 32 64 128
ALUs 3 4 6

L1 I/D Cache 64 kB 64 kB 64 kB
L2 Cache 2 MB 2 MB 2 MB

2/22/19
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Low-precision GEMM library

60 . ; ; —
(b) Integer Data-width Distribut
n 50
ADD 5
540-
SuUB ] 30}
AND 020
R 10}
CMP 0 .
1-bit  2-bit 4-bit 8-bit 16-bit 32-bit
MOV ] 70 :

w60
TST Ssol
= 40
ADD-LSL -
I §30-
MOV-LSL > 20}
10t
0 10 20 30 20 50 0 16-bit 32-bit 64-bit

% Operations

~50% of operations show 25-50%b data slack!!

2/22/19 © Gokul Ravi 25



PVT Slack

* Process:
20-25% » Manufacturing variability
: > Vth' I'gate
* Voltage:

> Current fluctuations
» Workload activity
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* Temperature:
» Hotspots
» Electron collisions

2/22/19 Tribeca, Gupta et al., MICRO ‘09 © Gokul Ravi
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Prior Proposal #1: Timing Speculation

» Increase frequency OR reduce voltage allowing some timing
errors to occur.

*[Ernst, 2003]

______________________________________
____________________________________

_____________________________________

stage = | D1 Q1 ;
o1 S0 Main :
P flip-flop i
P Error L
P Shadow —)D h
] latch :
Comparator !

Error

I":--E Razor flip-flop

clk_delay m

Requires costly timing error detection, recovery mechanismes.

Only allows coarse grained control — hence speculation is
conservative (for low ER).
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Prior Proposal #2: Specialized Data Paths

» Multi-cycle data path with sequence of combinational events
executed in one “slow tick”

_ [fast ook | | | | J | | [ | | | | [ | | | | | [
__[sow doxk | \ | | | | | — 1| *[Sampson, 2011]
s e — ——(—————"
datapath (settling)
j# 1 1 | 4‘#
| 1 1

| CFG [ |

| | |
| \ T | I |
datapath
/| | | | |
\ \ 2 | )
’ \ \ | | | C code:
|
a | | | ! for (i=0; i<N; i++) {
b * \ | | ” x = A[i];
\ \ | I | y = Blil;
C[x] = D[y] + x +y +
X \ \ | | \ | (x-1) *(y-1) ;
l l | ! ‘ | }
i ! ! f ! N ~ g
N x x f f ) \I/ f A T T

Poor throughput or significant replication overheads
No flexibility for general purpose processing
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Prior Proposal #3: Operation Fusion

» Squeeze a sequence of operations into a single (standard)
clock cycle

512

TR T RREO o STT R TR T

src0 srel src0 srel | *[Park, 2009]

} } } |

ADD ADD
[ |

out | 10 out

ot A

FUO . sre0 srel FU1

Out FU2 | out

Low opportunity in un-optimized code

Costly compiler or hardware optimizations to attempt
significant operations reordering

2/22/19 © Gokul Ravi
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Comparison with other proposals

Speedup over baseline (%)
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COMPUTE TIME (%)
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% Operations

Data Slack Classification

LP-GEMM » Operation Slack:
Opcode Distribution » Encoded within instruction
» Obtained via decode

LUT

2/22/19
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Data Slack Classification

LP-GEMM

SIMD Data-Type Distribution
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40% » Data-Type Slack:

20% » Encoded within instruction
» Obtained via decode
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Data Slack Classification

LP-GEMM

2/22/19

 Data-Width Slack:

» From operands (too late)
> Predict at decodeltoh. 2002]
» Verity at execute
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House of Slack

Slack
ac Low Temporal

variation

High Temporal
variation

Environment

[ |
l Operation \ l Data-Width \ Data-Type Process Voltage lTemperature\
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Skewed Select logic

Entry

Valid Mask (0-3) WU Arroy =
Mask([i]
1 0000 skl =
(0111, 1001) => 0001 => 1 %
1 1001 (111, 1101y => 0101 => 1 %

(0111, 1000) => 0000 => 0

0001
1000 ! :D
1

1 3 1
S R PSSy
........ Grant Array
(a)
WU Array ==
Entry Valid Mask => Eff. Mask P/GP Array
0 1 f(0000) => xxxx Mask[i] m— P/GP Array [i]
; 1 1 f(1001) => 1011 (x010, 1001, 0) => (0111, 1011) => 0011 => 1 %
o\t T 10010 (x010, 1101, 1) => (0111, x000) => 0000 => 0
1
' 2 1 f(1101) =>x000 , :D (x010, 1000, 0) => (0111, 1010) => 0010 => 1 %
L A e B
3 1 f(1000) => 1010
P/GP Array
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Overheads

* Decode:
— Width predictor uses 1.5KB of state
— Area/Energy 0.5% of core

* Execute:
— Negligible
* Scheduler:
— Slack computations 3-bits wide
— Operational design is 10 extra bits per RSE
— Area/Energy overhead: 0.3/0.8%
— Increase in scheduler delay is 1.5% (pessimistic)
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Timing Closure in Execute

* Traditional timing paths (in a standard FF design)
to analyze for timing closure would be (F1i-F1o0),
(F2i-F20), (F1o-F20) and (F20 — F10).

* For transparent, these would be (F1i -F20) and
(F20 -F20) when M12 is enabled for transparent
dataflow. Similarly, there would be (F2i - Fl10)
and (Flo - F1lo) when M21 is enabled for
transparent dataflow.
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