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Leveraging MLC STT-RAM for Energy-e icient CNN Training

ABSTRACT

GraphicsProcessingUnits(GPUs) areextensively usedin trainingof

convolutional neural networks(CNNs) duetotheir promisingcompute

capability. However, GPUmemory capacity, bandwidth, and energy

arebecomingcritical systembottleneckswith increasingly larger and

deeper trainingmodels.Thispaper proposesanenergy-e cient GPU

memory management schemeby employingMLCSTT-RAMasGPU

memory toaccommodatetheimageclassi cation trainingworkloads.

Weproposeadataremappingschemethat exploitstheasymmetryaccess

latency andenergy acrosssoft andhardbitsin MLCSTT-RAM cells

andthememory accesscharacteristics in imageclassi cation training

workloads. Furthermore,our designenables(i) energy-e cient memory

accessby leveragingbit-level similarity in trainingdataand(ii) optimal

featuremapencodingtocompressthecontiguous0sin featuremaps.

Our design reducesVGG-19andAlexNet training time,GPUmemory

accessenergy andcapacity utilization by 76%and70%, 45%and40%,

and 26.9%and 26%, respectively.

1 INTRODUCTION

Recent development of convolutional neural networks(CNNs) isradi-

cally alteringtheway weprocessvariousapplications, suchasimage

classi cation,speechrecognition,object detection,andcomputer vision.

Amongthese, imageclassi cation isoneof themost widely targeted

application domainsinmodernCNNs[19, 24, 25].Softwaredevelopers

strivetoimproveCNNtrainingperformanceandaccuracy by adopting

larger anddeeper neural networkswithmoreparameters. Asaresult,

thetrainingof large-scaleCNNmodelsistypicallyperformedbygraphic

processing units (GPUs) with promising compute capability [19].

However, thecontinuousscalingof trainingnetworksmakestrain-

ingworkloadsincreasingly dataintensive,exposingGPUmemory ca-

pacity, bandwidth, andenergy ascritical systembottlenecks[18, 23].

Figure1(a) showsthememory capacity demandof recent winnersof

theImageNet LargeScaleVisual Recognition Challenge(ILSVRC) [14],

includingAlexNet [19],GoogLeNet [25],VGG-16andVGG-19[24] (ex-

perimental setup isdescribed in Section 5). When thebatch sizeof

VGG-19reaches128,evenasingleNVIDIA’sGTX1080Ti (11GBdevice

memory)cannot meet thememory demand.Thememory demandcan

further increasewiththedesignof recent ILSVRCwinners,whichadopt

morethanahundredconvolutional layers[13].Moreover, theincrease

of memory capacity demandalsoincreasesthebandwidth demandand

dynamicenergy consumption inGPUmemory access. GPUstypically

havelimitedon-chip storageresources(such ascaches, register les,

andsharedmemories), whichcannot holdthelargeworkingset of CNN

trainingworkloads. Asaresult, CNNtrainingcan imposehigh mem-

ory bandwidth demand(Figure1(b)) andmemory power consumption

(Figure 1(c)).

Thegoal of thispaper isto improvetheperformance, energy e -

ciency, and capacity utilization of CNN training for imageclassi ca-

tion, without sacri cingany of thesemetrics. Tothisend,wedesign a

multi-level cell (MLC) STT-RAM-basedGPUmemory architecturewith

lightweight modi cationstothememorycontrollersandmemorybanks.

Weproposeadataremappingscheme,which reducesmemory tra c

andaccesslatency by categorizingandmappingdi erent typesof data

indi erent mannersinMLCSTT-RAM.Our schemefurther enablestwo

GPUmemory optimization mechanisms: (i) anenergy-e cient memory

accessmechanism, which reducesmemory accessenergy consumption
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Figure 1: GPU memory demand and system energy breakdown.

(a) GPU memory uti l ization. (b) GPU memory bandwidth de-

mand and accesses. (c) NVIDIA GTX 1080 Ti dynamic power

breakdown when executing VGG-19.

by avoidingtheunnecessary writesat thebit level; ii) asparsity-aware

dataencodingmechanism, which increasese ectivememory capacity

with dataencoding by exploiting thesparsity in featuremaps. This

paper makes the following contributions:

• Weproposeadataremapping schemethat storesvarioustypesof

dataof trainingworkloadsinMLCSTT-RAM,basedontheir di erent

accesscharacteristics. Our remapping schemeenablesenergy and

capacity e cient MLC STT-RAM data access.

• Wepresent twomemory accessoptimization mechanismsbasedon

our dataremappingscheme:i)BitLevel-leveragetheasymmetricwrite

current and access latency; ii) SparseCode-exploits thesparsity in

featuremaps to compress the data without quality loss.

• Wedevelopaset of lightweight hardwareimplementationsandsoft-

ware support to facilitate our mechanisms.

2 BACKGROUND AND MOTIVATION

2.1 Convolutional Neural Networks

Deepneural networks(DNNs) havevarioustypes,suchasrecurrent neu-

ral networks(RNNs), convolutional neural networks(CNNs), etc.This

paper focuseson feedforward-styleCNNscommonly used in image

classi cation[19,24,25].CNNsconsistsseveral layers, includingconvo-

lutional layersthat performimageconvolution,activationlayerstomake

neural networksnonlinear withactivation functions, poolinglayersto

reducethefeaturemap sizeby down sampling, and fully connected

layerstoanalyzefeaturesandclassify input imagesintogroups. CNNs

havetwophases: trainingandinference.TrainingallowsCNNstolearn

andupdateweightswithmultiplelayersof neural networks, through

forwardandbackwardpropagationswithoppositetraversedirections

(Figure2).Forwardpropagation generatesfeaturemapsusingweights

andbackwardpropagation updatestheweights. Inferenceemploysthe

trainedmodelstoperformnewrecognitionsor classi cations. Thispa-

per focuseson studying thetraining phase, which istypically much

morecompute and data intensive than inference phase.

Forward and backward propagation. In forwardpropagation, each

layer multipliesan input featuremap x by aconvolutional lter – a

weight matrix – and outputs featuremap y. Then, y is fed into the

next layer asinput featuremap.When forwardpropagation of alayer

completes, a loss function will generate an output that is calculated by

featuremapsof that layer andvalidation dataset. Then, agradient map

isobtained by chain rule:

Input image
3 channels

… Loss 
function

Layer 1

X X

Layer N-1

Y Y

∂Y∂X…∂Y∂X

*W *W X
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∂(Error)

Figure 2: CNN architecture.

Training neural networks is data intensive, and increasingly so. 

Issues with Memory Capacity Bottleneck
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Why Memory Network

[Zhao, TACO 2015]

• Memory Networks
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String Figure: 
A Scalable and Elastic Memory Network Design

13

Scalability

Arbitrary Network Scale

Elastic Network ScaleO
u

r 
G

o
a

ls



Topology design
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Random topology generation
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Reconfigurable router
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Greedy routing protocol
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Node

#

D in 

Space-0

D in 

Space-1
MD

7 0.49 0.62 0.49

0 0.20 0.70 0.20

3 0.13 0.44 0.13

6 0.43 0.12 0.12

8 0.68 0.07 0.07

1

Node# Block. Valid  Hop  Space#  Coordi.

0 00 0.00

1 0 02 0.20

1 1 03 0.33

1 1 08 0.88

1 0 15 0.58

1 0 16 0.75

…

…

…

1

1

1

1

1

1

Minimum distance (MD) to Node-2 
from Node-7 and Node-7’s neighbors 

Routing table entries 



Implementation
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Design Parameters:
• Payload Size (bits)
• # of net ports
• # of routers
• # of router ports



Simulation
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S2 Topology gen 
script (*.py)

Topology 
File (*.Topo)

Network 
RTL (*.v)

PyMTL Wrapper (*.py)
Parameters

Unit Tests 
(*.py)

net sim 
(*.py)

McSimA+ 
simulator

workloads

memory 
trace results

waveform 
(*.vcd)

waveform 
viewer

waveform 
(*.vcd)

• Future Work
• SystemVerilog to PyMTL (Python)
• Open source
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Topology
Number of Nodes (N), Number of Ports per Router (p)

Routing SchemeN 16 17 32 61 64 113 128 256 512 1024 1296
Distributed-Mesh (DM) / 
Optimized DM (ODM) p 4 n/a 4 n/a 4 n/a 4 4 4 4 4 Greedy + adaptive

Flattened Butterfly (FB) p 20 24 31 33 minimal + adaptive

Adaptive FB (AFB) p 13 17 23 25 minimal + adaptive

Space Shuffle Ideal (S2-ideal) p 4 4 4 4 4 4 4 8 8 8 8 look-up table (LUT)

String Figure (SF) p 4 4 4 4 4 4 4 8 8 8 8 LUT + greedy + adaptive
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22

• Traffic Patterns – specific routing behaviors in networks
• Uniform Random
• Tornado
• Hotspot
• Opposite

• Workloads – real-world applications for memory networks
• Spark-wordcount
• Spark-grep
• Spark-sort
• Pagerank

• Nearest Neighbor
• Complement
• Partition

• Redis
• Memcached
• Matrix Multiply
• Kmeans
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Fig. 8. Average hop counts of various network designs as the number of
memory nodes increases.

FB achieves the best average shortest path lengths among all

thenetwork topologies, because it employsmany moreports in

routers than other topologies as the network scales up. With a

maximum of eight ports per router, String Figure still achieves

4.75 and 4.96 average hop counts when the network scales

up to 1024 and 1296 memory nodes, respectively. We also

evaluate 10% and 90% percentile shortest path lengths. String

Figure can achieve 4 hops and 5 hops with over one thousand

nodes, at 10% and 90% percentile, respectively. Therefore,

String Figure path length is scalable to memory network size

over one thousand nodes.
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Fig. 9. Network saturation points of traffic patterns across various numbers
of nodes.

Network Saturation. We evaluate network saturation with

several traffic patterns shown in Figure 9. String Figure can

achieve close to the best of all other network architectures. In

order to clearly visualize all the curves, we only show the the

results of the rest of the network architectures. Traffic patterns

uni f or m r andom, hot spot , and t or nado are particu-

larly noteworthy and show different results. The remaining

traffic patterns par t i t i on2, compl ement , opposi t e,

and nei ghbor , have similar behavior as shown. In almost all

traffic patterns, the mesh network topologies, DM and ODM,

saturates first at the lowest injection rate. Nearest-neighbor

routing is the exception to this. SF perform worsewith nearest-

neighbor than ODM. This is because in mesh topologies,

nodes are always one-hop away from their nearest neighboring

node. Note, that we generated nearest-neighbor network traffic

using the router IDs rather than number of hops. Therefore,

“neighboring” nodes in SF are not necessarily one hop away

from each other which means this network has higher latency.

However, an exception to mesh saturating first is in networks

with very few nodes. At the fewest node configuration (i.e.,

16 nodes), ODM slightly edges out SF. However, as the

number of memory nodes increases, SF scales significantly

better. ODM also saturates at a higher injection rate than other

network designs with hot spot traffic pattern. We do not

observe network saturation in tornado traffic pattern with all

topologies, except for mesh. Network latency remains steady

even in high injection rates and large number of memory

nodes. The reason is the geometric structure of the network

designs. With either one of AFB, FB, S2-ideal, and SF, it

is typically easy for packets in a network to traverse half

or the entire network in just a hop or two to reach their

destination. Traffic patterns, such as tornado, generate traffic

in a mathematically geometric manner which is advantageous

in such topologies.

Fig. 10. Performance of traffic patterns at less than one thousand nodes.

Average packet latency. We evaluate the average travel

time (latency) between any two nodes in a network shown

in Figure 10. Each traffic pattern graph shows the latency

in the leftmost data point for each network. S2-ideal and SF

appear to scale well with the number of memory nodes. As

the number of nodes in the network increases, these topologies

show almost no degradation in their network saturation points.

SF has slightly longer latency than S2-ideal with networks

down-scaled from the original size, because shortcuts and

adaptive routing can degrade the randomness among network

connections. However, SF still demonstrates lower latency than

AFB at large network scales. We also evaluate the memory

access latency of various traffic patterns.
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Fig. 11. Normalized (a) system throughput (higher is better) and (b) dynamic
memory energy (lower is better) with various real workloads.

Performance and Energy of Real Workloads. We evaluate

system performance and memory dynamic energy consump-

tion with several real workloads running in a memory system,

where the total memory capacity is 8TB distributed across the

1024 (down-scaled from 1296) memory nodes in the network.

We take into account dynamic reconfiguration overhead to per-

form power gating in our RTL simulation by implementing SF

reconfiguration mechanisms. The sleep and wake-up latency

of a link is conservatively set to 680ns and 5µs similar to

10
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Fig. 8. Average hop counts of various network designs as the number of
memory nodes increases.

FB achieves the best average shortest path lengths among all

thenetwork topologies, because it employsmany moreports in

routers than other topologies as the network scales up. With a

maximum of eight ports per router, String Figure still achieves

4.75 and 4.96 average hop counts when the network scales

up to 1024 and 1296 memory nodes, respectively. We also

evaluate 10% and 90% percentile shortest path lengths. String

Figure can achieve 4 hops and 5 hops with over one thousand

nodes, at 10% and 90% percentile, respectively. Therefore,

String Figure path length is scalable to memory network size

over one thousand nodes.
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of nodes.

Network Saturation. We evaluate network saturation with

several traffic patterns shown in Figure 9. String Figure can

achieve close to the best of all other network architectures. In

order to clearly visualize all the curves, we only show the the

results of the rest of the network architectures. Traffic patterns

uni f or m r andom, hot spot , and t or nado are particu-

larly noteworthy and show different results. The remaining

traffic patterns par t i t i on2, compl ement , opposi t e,

and nei ghbor , have similar behavior as shown. In almost all

traffic patterns, the mesh network topologies, DM and ODM,

saturates first at the lowest injection rate. Nearest-neighbor

routing is the exception to this. SF perform worsewith nearest-

neighbor than ODM. This is because in mesh topologies,

nodes are always one-hop away from their nearest neighboring

node. Note, that we generated nearest-neighbor network traffic

using the router IDs rather than number of hops. Therefore,

“neighboring” nodes in SF are not necessarily one hop away

from each other which means this network has higher latency.

However, an exception to mesh saturating first is in networks

with very few nodes. At the fewest node configuration (i.e.,

16 nodes), ODM slightly edges out SF. However, as the

number of memory nodes increases, SF scales significantly

better. ODM also saturates at a higher injection rate than other

network designs with hot spot traffic pattern. We do not

observe network saturation in tornado traffic pattern with all

topologies, except for mesh. Network latency remains steady

even in high injection rates and large number of memory

nodes. The reason is the geometric structure of the network

designs. With either one of AFB, FB, S2-ideal, and SF, it

is typically easy for packets in a network to traverse half

or the entire network in just a hop or two to reach their

destination. Traffic patterns, such as tornado, generate traffic

in a mathematically geometric manner which is advantageous

in such topologies.

Fig. 10. Performance of traffic patterns at less than one thousand nodes.

Average packet latency. We evaluate the average travel

time (latency) between any two nodes in a network shown

in Figure 10. Each traffic pattern graph shows the latency

in the leftmost data point for each network. S2-ideal and SF

appear to scale well with the number of memory nodes. As

the number of nodes in the network increases, these topologies

show almost no degradation in their network saturation points.

SF has slightly longer latency than S2-ideal with networks

down-scaled from the original size, because shortcuts and

adaptive routing can degrade the randomness among network

connections. However, SF still demonstrates lower latency than

AFB at large network scales. We also evaluate the memory

access latency of various traffic patterns.
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Fig. 11. Normalized (a) system throughput (higher is better) and (b) dynamic
memory energy (lower is better) with various real workloads.

Performance and Energy of Real Workloads. We evaluate

system performance and memory dynamic energy consump-

tion with several real workloads running in a memory system,

where the total memory capacity is 8TB distributed across the

1024 (down-scaled from 1296) memory nodes in the network.

We take into account dynamic reconfiguration overhead to per-

form power gating in our RTL simulation by implementing SF

reconfiguration mechanisms. The sleep and wake-up latency

of a link is conservatively set to 680ns and 5µs similar to

10

• More in the paper!
• Traffic pattern latencies
• Real workload 

performance
• Network saturation 
• Energy-Delay Product 

(EDP)
• Network scaling
• Deadlock avoidance
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