Power Aware Heterogeneous Node Assembly

Bilge Acun, Alper Buyuktosunoglu, Eun Kyung Lee, Yoonho Park IBM T. J. Watson Research Center

Outline

- 1. Motivation
- 2. Power Variation Analysis
- 3. Variation Aware Node-Assembly Techniques
- 4. Evaluation
- 5. Conclusion

Outline

1. Motivation

- 2. Power Variation Analysis
- 3. Variation Aware Node-Assembly Techniques
- 4. Evaluation
- 5. Conclusion

Motivation: Heterogenous Fat Compute Nodes

Motivation: Manufacturing Variations in Hardware

 Parametric data of 190 IBM POWER8 chips showing the correlation between quiescent current (Iddq) and PSRO (performance sort/screen ring oscillator). • Supply voltage distribution fitting a Gaussian distribution.

Motivation: Insufficient Scheduling Methods

Dictionary:

- Power aware job scheduling comes with a performance trade-off
 - Contiguous node allocations are used to optimize for network performance
 - Moving the threads can be bad for locality
- Supercomputer job schedulers cannot address within node variations
 - Nodes are allocated exclusively to each application
 - Good and bad chip might end up in the same node

Variation Aware Node-Assembly Methods

Illustration of Type-1 Node Assembly Illustration of Type-2 Node Assembly Illustration of Type-3 Node Assembly

Sorted

Balanced

App-Aware

Outline

1. Motivation

2. Power Variation Analysis

- 3. Variation Aware Node-Assembly Techniques
- 4. Evaluation
- 5. Conclusion

Static Power Distribution

- We use the open-source AMESTER tool in order to make voltage, power and temperature measurements in IBM POWER chips.
- For NVIDIA Pascal GPUs, we use the NVIDIA System Management Interface (nvidia-smi) for power measurements.

• Chips show 49%, memory units show 20%, GPUs show 18% variation in idle power consumption.

Dynamic Power Distribution

- We ran the micro-benchmarks independently on each processor to remove network variations.
- The power variation is 28% for DGEMM, 16% for KNeighbor, 20% for Stencil3D.
- Iso-performance processors: no significant performance variation (3%).

Idle and Active Power Correlation

- What metric should be used for sorting?
 - The chips that have high (or low) idle power do not necessarily have high (or low) active power.
 - Active power provides a better representation of the run-time scenario.

Temperature Distribution

• Would re-shuffling the hardware components cause temperature imbalance within data-center?

- Not significantly:
 Vertical distance is almost same as the horizontal distance.
- Cooling systems are designed for the worst case scenarios.

All Node Components Have Variation

- Distribution of the active power of different node components: CPU, GPU, Memory running DGEMM benchmark fit to the Gaussian distribution.
- Fitting curves are later used in evaluation for generating components for large-scale simulations.

Outline

- 1. Motivation
- 2. Power Variation Analysis

3. Variation Aware Node-Assembly Techniques

- 4. Evaluation
- 5. Conclusion

Variation Aware Node-Assembly Methods

Illustration of Type-1 Node Assembly Illustration of Type-2 Node Assembly Illustration of Type-3 Node Assembly

1. Sorted Assembly

- The goal is the sort the processors in terms of their power efficiency into nodes and racks
- Place the most intensive workloads starting from the most efficient nodes
- When the data center load is low, turn off in-efficient nodes

Illustration of Data Center Components' Efficiency in Random Assembly

Illustration of Type-1 Node Assembly

Data Center Utilization Varies Over Time

Weekly Utilization Levels of Various Supercomputers

- Average weekly percentage utilization of different top supercomputers are shown during a period of seven months.
- Data is collected hourly starting Nov 1, 2017 from ANL, TACC and NERSC public websites.
- Avg utilization across all 5 supercomputers is 75%.

Power Reduction with Sorted Assembly

Type-I Improvement Compared to Random Assembly At Different Data Center Loads

- Power reduction with sorted assembly compared to the random assembly at different data center loads with a size of 5,000 nodes.
- Unused nodes assumed to be turned-off.

2. Balanced Power Assembly

• The goal is to balance performance per watt for the nodes

2. Balanced Power Assembly

	CPU Variation	GPU Variation	Memory Variation	Min Node Power	Max Node Power	Node Variation
Random Assembly	27.8~%	18.3 %	21.5 %	1 (1097W)	1.15 (1267W) $ $	14.4~%
Balanced Power Assembly	1.4~%	0.7 %	1.4 %	1.06 (1173W)	1.07 (1178W)	0.4~%

- Node to node power variation is minimized with power balanced assembly.
- Performance-per-watt becomes more predictable for nodes.
- This technique might be more suitable for cloud workloads.

3. Application Aware Assembly

• Components which application use most heavily are selected to use the most power efficient components.

• Job scheduler support is needed to decide application placement.

3. Application Aware Assembly

- With application-aware assembly:
 - CPU-intensive benchmarks run on the most power efficient half the CPUs, and inefficient part of GPUs.
 - GPU-intensive applications run on the most power efficient GPUs and inefficient half of the CPUs.

3. Application Aware Assembly

	CPU Power	GPU Power	Node Power
Random Assembly	1	1	1
App. Aware Assembly	0.97	0.98	0.98
Power Reduction	3%	2%	2%

- Power reduction with application-aware assembly compared to random assembly.
- Power is normalized according to random assembly in each column.
- In a data-center comprised of 5,000 nodes, 2% of the node power is equivalent to 130 KW.

Outline

- 1. Motivation
- 2. Power Variation Analysis
- 3. Variation Aware Node-Assembly Techniques

4. Evaluation

5. Conclusion

Evaluation – \$ Savings

 $\begin{array}{l} AC = Additional \ Assembly \ Cost\\ ER = Energy \ Reduction\\ PR = Power \ Reduction\\ EP = Electricity \ Price = 10.48 \ cents \ per \ kWh \ [26]\\ T = System \ Up \ Time = 350 \ days = 8400 \ hours\\ Average \ System \ Utilization = 50\% \ (or \ 3.5\% \ total\\ reduction)\\ \hline\\ CostReduction = EP \times ER - AC\\ 0 < EP \times T \times PR - AC\\ AC < 10.48 \ (cents \ per \ kWh) \times 8400 \ hours \times 100 \ KW\\ AC < \$90, 083 \ per \ year \end{array}$

Cost Reduction Per Year with Different Node Counts

• Dollar savings increase as the data center size increases.

Power Reduction with Increased Variability

What if

variation

increase?

- Power reduction increases as variability increases for sorted assembly.
- σ represents measured standard deviation in the current architectures.
 1.5σ, 2σ represents the scenarios when the deviation increases 1.5x and 2x times respectively.

Outline

- 1. Motivation
- 2. Power Variation Analysis
- 3. Variation Aware Node-Assembly Techniques
- 4. Evaluation
- 5. Conclusion

Summary

- There is significant manufacturing variation among components in HPC data-centers
- Node assembly techniques do not take hardware variation into account
- We propose and evaluate three node assembly techniques

	Use Cases	Job Scheduler Support	Energy Savings	Performance Degradation
Sorted Assembly	Systems with variable utilization rates	Minor	\checkmark	X
Balanced Power Assembly	Cloud systems	None	×	X
App. Aware Assembly	Systems with mixed app. characteristics	Major	\checkmark	X

Thank you!

Backup Slides: Power 8 & 9 Parametric Data

Backup Slides: Performance Variation

