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Motivation: Heterogenous Fat Compute Nodes

Heterogeneous Fat Compute Node Architecture . . www.top500.org
Network Card Network Card : 500 November, 2018 list
The List.
Rmax Rpeak Power
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)

1 DOE/SC/0Oak Ridge National Laboratory Summit - IBM Power System 2,397,824 143,500.0 200,794.9 9,783
United States AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100,
Dual-rail Mellanox EDR

GPU GPU GPU GPU GPU GPU e
IBM
DOE/NNSA/LLNL Sierra - IBM Power System 1,572,480 94,640.0 125,712.0 7,438
United States S922LC, IBM POWERY 22C

3.1GHz, NVIDIA Volta GV100,
Dual-rail Mellanox EDR
Infiniband

IBM / NVIDIA / Mellanox

National Supercomputing Center in Sunway TaihuLight - Sunway 10,649,600 93,014.6 125,435.9 15,371
Wuxi MPP, Sunway SW26010 260C
China 1.45GHz, Sunway

NRCPC




Motivation: Manufacturing Variations in Hardware
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* Parametric data of 190 IBM POWERS chips showing the * Supply voltage distribution fitting a
correlation between quiescent current (lddqg) and Gaussian distribution.

PSRO (performance sort/screen ring oscillator).



Motivation: Insufficient Scheduling Methods

lllustration of Data Center Components’ Efficiency
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 Power aware job scheduling comes
with a performance trade-off
* Contiguous node allocations are
used to optimize for network
performance
* Moving the threads can be bad for
locality

e Supercomputerjob schedulers
cannot address within node variations
* Nodes are allocated exclusively
to each application
* Good and bad chip might end up
in the same node



Variation Aware Node-Assembly Methods

lllustration of Type-1 Node Assembly
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llustration of Type-3 Node Assembly
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Static Power Distribution

* We use the open-source AMESTER tool in order to make voltage, power and temperature measurements
in IBM POWER chips.

* For NVIDIA Pascal GPUs, we use the NVIDIA System Management Interface (nvidia-smi)for power measurements.
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* Chips show 49%, memory units show 20%, GPUs show 18% variation in idle power consumption.



Dynamic Power Distribution

DGEMM Chip Power Distribution KNeighbor Chip Power Distribution Stencil3D Chip Power Distribution
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* We ran the micro-benchmarks independently on each processor to remove network variations.
* The power variation is 28% for DGEMM, 16% for KNeighbor, 20% for Stencil3D.
* Iso-performance processors: no significant performance variation (3%).



ldle and Active Power Correlation

|dle versus Active Chip Power Correlation
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* What metric should be used for sorting?

* The chips that have high (or low) idle power do not necessarily have high (or low) active power.
* Active power provides a better representation of the run-time scenario.



Temperature Distribution

e Would re-shuffling the hardware components cause temperature imbalance within data-center?

Temperature (C)
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Temperature and Power Correlation of Idle and Active Chips

Idle Chip X Active Chip * |
*=0576 = r’=034] ="
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Power (Normalized to p/__4.)

Not significantly:
Vertical distance is
almost same as the
horizontal distance.

Cooling systems are
designed for the worst
case scenarios.



All Node Components Have Variation
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* Distribution of the active power of different node components: CPU, GPU, Memory running DGEMM
benchmark fit to the Gaussian distribution.
* Fitting curves are later used in evaluation for generating components for large-scale simulations.

Probability
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Variation Aware Node-Assembly Methods

lllustration of Type-1 Node Assembly

llustration of Type-2 Node Assembly Illustration of Type-3 Node Assembly
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1. Sorted Assembly

 The goalisthe sort the processors in terms of their power efficiency into nodes and racks
* Place the most intensive workloads starting from the most efficient nodes
* When the data center load is low, turn off in-efficient nodes

Illustration of Data Center Components’ Efficiency

n Random Assembly lllustration of Type-1 Node Assembly
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Data Center Utilization Varies Over Time

Weekly Urtilization Levels of Various Supercomputers
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* Average weekly percentage utilization of different top supercomputers are shown during a period of seven months.
* Datais collected hourly starting Nov 1, 2017 from ANL, TACC and NERSC publicwebsites.
e Avg utilizationacross all 5 supercomputersis 75%.



Power Reduction with Sorted Assembly

Type-| Improvement Compared to Random Assembly
At Different Data Center Loads

8 120 —~
< 3
?::, Z 100 ¥
S . 80 o
S 3]
o 4 60 3
CE 3 40 o«
g 5
£ 08

o

0 0

o
N
o
w
o

40 50 60 70 80 90 100
Data Center Load (%)

* Power reduction with sorted assembly compared to the random assembly at different data
center loads with a size of 5,000 nodes.
* Unused nodes assumed to be turned-off.



2. Balanced Power Assembly

* The goal is to balance performance per watt for the nodes

lllustration of Data Center Components’ Efficiency

in Random Assembly llustration of Type-2 Node Assembly
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2. Balanced Power Assembly

CPU GPU Memory Min Max Node

Variation | Variation | Variation | Node Power | Node Power | Variation
Random Assembly 27.8 % 18.3 % 21.5 % 1 (1097W) 1.15 (1267W) 14.4 %
Balanced Power Assembly 1.4 % 0.7 % 1.4 % 1.06 (1173W) 1.07 (1178W) 0.4 %

* Node to node power variation is minimized with power balanced assembly.
e Performance-per-watt becomes more predictable for nodes.
* This technique might be more suitable for cloud workloads.



3. Application Aware Assembly

* Components which application use most heavily are selected to use the most power efficient components.
* Job scheduler support is needed to decide application placement.

llustration of Data Center Components’ Efficiency

lllustration of Type-3 Node Assembly
in Random Assembly
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3. Application Aware Assembly

GPU Intensive Benchmark Power Distribution

CPU Intensive Benchmark Power Distribution
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* With application-aware assembly:
CPU-intensive benchmarks run on the most power efficient halfthe CPUs, and inefficient part of GPUs.

GPU-intensive applicationsrun on the most power efficient GPUs and inefficient half of the CPUs.



3. Application Aware Assembly

CPU | GPU | Node

Power | Power | Power

Random Assembly 1 1 1
App. Aware Assembly| 0.97 0.98 0.98
Power Reduction 3% 2% 2%

* Power reduction with application-aware assembly compared to random assembly.
* Power is normalized according to random assembly in each column.

* In a data-center comprised of 5,000 nodes, 2% of the node power is equivalentto 130 KW.
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Evaluation — S Savings

Cost Reduction Per Year with Different Node Counts
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* Dollarsavingsincrease as the data center size increases.



Power Reduction with Increased Variability
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* Power reduction increases as variability increases for sorted assembly.

e o represents measured standard deviation in the current architectures.
1.50, 20 represents the scenarios when the deviation increases 1.5x and
2x times respectively.
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Summary

* There is significant manufacturing variation among componentsin HPC data-centers
 Node assembly techniques do not take hardware variation into account

* We propose and evaluate three node assembly techniques

Use Cases Job Scheduler | Energy | Performance

Support Savings | Degradation
Sorted Assembly | Systems with variable utilization rates | Minor | v | X
Balanced Power Assembly | Cloud systems | None | X | X
App. Aware Assembly Systems with mixed app. characteristics | Major | va | X




Thank youl!
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IPS (Millions)

Backup Slides: Performance Variation

Idle Chip Power and IPS
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